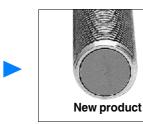
|                         | Standard            | E2E/E2EG | E-2  |
|-------------------------|---------------------|----------|------|
| Cylindrical             | Antispatter         | E2EQ     | E-32 |
|                         | Chemical Resistance | E2FQ     | E-40 |
|                         |                     |          |      |
|                         | Subminiature        | E2S      | E-44 |
| Rectangular             | Flat                | TL-W     | E-52 |
|                         | Standard            | TL-N     | E-60 |
|                         |                     |          |      |
|                         | Liquid Level        | E2K-L    | E-68 |
| Capacitive              | Long Distance       | E2K-C    | E-74 |
| Capacilive              | Flat                | E2K-F    | E-80 |
|                         | Chemical Resistance | E2KQ-X   | E-84 |
|                         |                     |          |      |
| Peripheral<br>Equipment | Accessories         | Y92□     | E-87 |
|                         |                     |          |      |

### Cylindrical Proximity Sensor

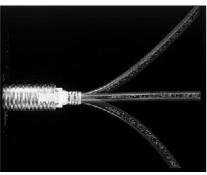
# E2E/E2EG

# Well established Series of Easy-to-use and Tough E2E/E2EG Models



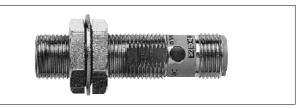

#### **Features**

### Improved mounting strength


The base bracket strength has been increased. M12 and more cases grew thicker. Moreover, clamping intensity is enhanced, such as adopting stainless steel material as M8.





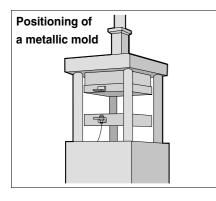

#### Cable breakage protection

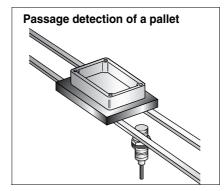
The cable protector was adopted in order to prevent possible refraction.

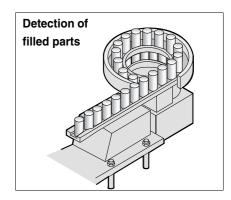


### **Connector strength improved**

All connector types changed the material of a screw into metal. It can be used for demanding applications now.





#### Excellent environmental resistance is realized


As a detection side is adopted the strong material against cutting oil. It can be used under various environment.



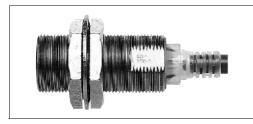
### **Application**








#### **Features**


## Optimized visibility by firefly display.

The introduction of a tail indicator (firefly display) allowed to increase legibility and vision field. Attachment and maintenance became easy.



#### **Elongated attachment screw.**

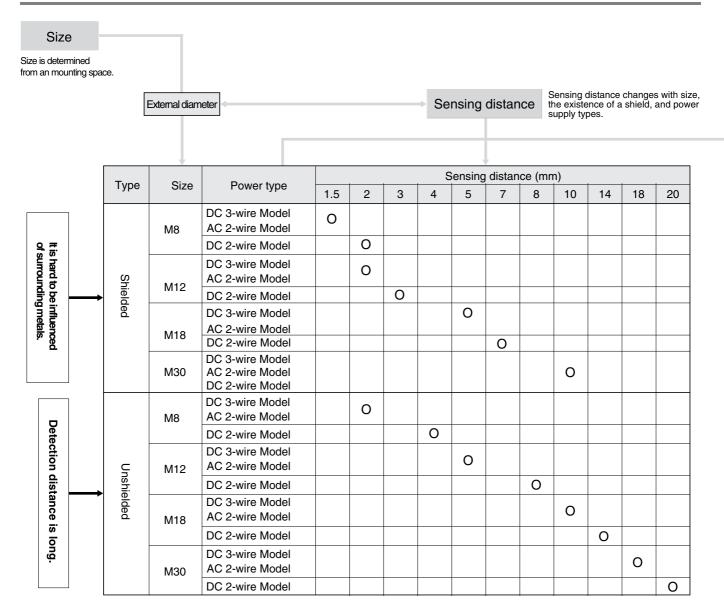
The general screw type is used for all models. The overall length was not extended, but the screw was lengthened increasing the installation adjustment range.



#### Use for a milling cutter

Use for a milling cutter to hold with a spanner It provides a smooth installation and maintenance.




## The E2EG series models include M8 plug-in connector models.

M8 connector series is a compact type with sufficient space efficiency.

It can be used in various places.



### **Cylindrical Proximity Sensors Selection Guide**



Connection check by means of a DC 2-wire proximity sensor and PLC (programmable logic controller)

#### (Required Conditions)

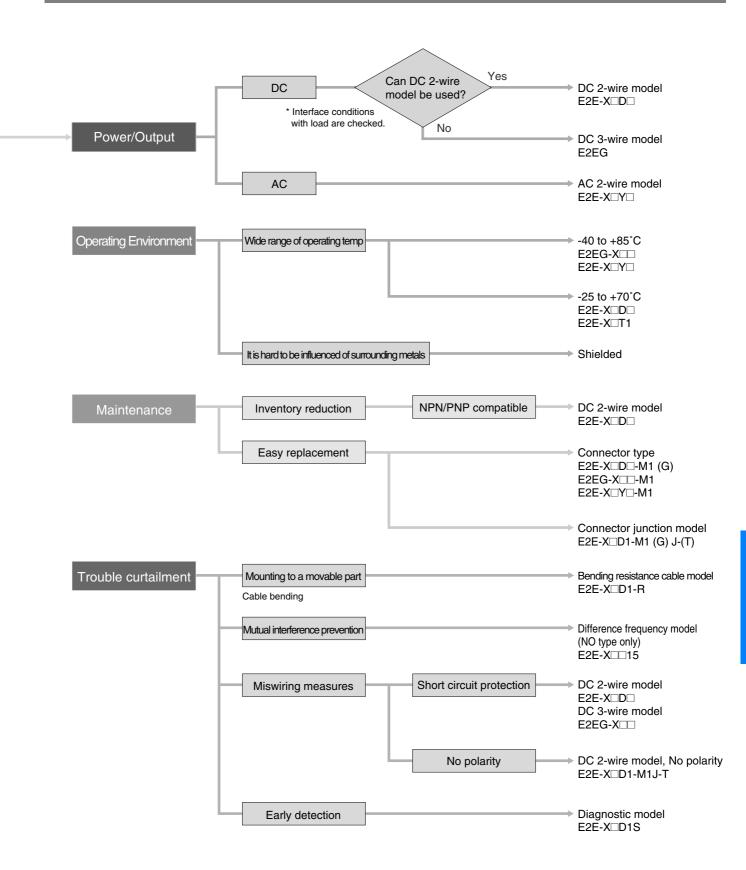
Connection to a PLC is possible if the specifications of the PLC and the Proximity Sensor satisfy the following conditions. (The meanings of the symbols are given below.)

- 1. The ON voltage of the PLC and the residual voltage of the Proximity Sensor must satisfy the following. VON ≤ VCC - VR
- 2. The OFF current of the PLC and the leakage current of the Proximity Sensor must satisfy the following.  $IOFF \ge ILEAK$

(If the OFF current of the PLC and the control output (IOUT) of the Proximity Sensor must satisfy the following.)

 $IOUT (min) \le ION \le IOUT (max)$ 

3. The ON current of the PLC will vary, however, with the supply voltage and the input impedance used as shown in the following equation. ION = (VCC-VR-VPC)/RIN


#### (Connection example)

In this example, the above conditions are checked for such case that the PLC model is the C200H-ID212, the proximity sensor model is E2E-X7D1-N, and the supply voltage is 24 VDC.

- 1. VON (14.4 V) ≤ Vcc (20.4 V) VR (3 V) 17.4 V : OK : OK
- 2. IOFF (1.3 mÅ) ≥ ILEAK (0.8mÅ)

3. Ion = (Vcc (20.4 V) - VR (3 V) - VPc (4 V)) / RIN (3 k $\Omega$ )  $\approx$  4.5mA Whereas, IOUT (min)  $(3 \text{ mA}) \leq = \text{ION} (4.5 \text{ mA})$ : OK

| Von: PLC ON voltage (14.4 V)                              | п<br> |
|-----------------------------------------------------------|-------|
| ION: PLC ON current (typ.7 mA)                            | 1     |
| IOFF: PLC OFF current (1.3 mA)                            | 1     |
| RIN: PLC input impedance (3 k $\Omega$ )                  | 1     |
| VPC: PLC internal remains voltage (4 V)                   | Ì     |
| VR: Output residual voltage of Proximity Sensor           | 1     |
| (3 V)                                                     | 1     |
| ILEAK : Leakage current of Proximity Sensor               | 1     |
| (0.8 mA)                                                  | 1     |
| IOUT: Proximity sensors control output                    | 1     |
| (3 to 100 mA)                                             | 1     |
| Vcc: supply voltage                                       | 1     |
| (PLC: 20.4 to 26.4 V)                                     | 1     |
| The values in parentheses are for the following           | l     |
| PLC model and Proximity Sensor model.<br>PLC: C200H-ID212 | 1     |
|                                                           | I     |
| Proximity Sensor: E2E-X7D1-N                              | 1     |
|                                                           | I     |
|                                                           |       |



### **Ordering Information**

#### Sensors

DC 2-wire/Pre-wired Models (3-wire with a self-diagnostic function.)

| Self diagnostic                | Shap       | 0   | Sensing dist | tanco |             | Мо     | del         |    |
|--------------------------------|------------|-----|--------------|-------|-------------|--------|-------------|----|
| output function                | Shap       | 6   | Sensing dis  | lance | NC          | )      | NC          |    |
|                                | Shielded   | M12 | 🔄 3mm        |       | E2E-X3D1S   | *1     |             |    |
|                                |            | M18 | <b>7</b> mm  |       | E2E-X7D1S   | *1     |             |    |
| ON or OFF                      |            | M30 | 10mm         |       | E2E-X10D1S  | *1     |             |    |
| delay 0 to 5 s<br>(adjustable) | Unshielded | M12 | 8mm          |       | E2E-X8MD1S  | *1     |             |    |
|                                |            | M18 | 14mn         | n     | E2E-X14MD1S | *1     |             |    |
|                                |            | M30 | 2            | 0mm   | E2E-X20MD1S | *1     |             |    |
|                                |            | M8  | 2mm          |       | E2E-X2D1-N  | *2*3   | E2E-X2D2-N  | *3 |
|                                | Shielded   | M12 | 3mm          |       | E2E-X3D1-N  | *1*2*3 | E2E-X3D2-N  | *3 |
|                                |            | M18 | 7mm          |       | E2E-X7D1-N  | *1*2*3 | E2E-X7D2-N  | *3 |
| No                             | ₩Ø         | M30 | 10mm         |       | E2E-X10D1-N | *1*2*3 | E2E-X10D2-N |    |
| INO                            |            | M8  | 4mm          |       | E2E-X4MD1   | *2*3   | E2E-X4MD2   |    |
|                                | Unshielded | M12 | 8mm          |       | E2E-X8MD1   | *1*2*3 | E2E-X8MD2   |    |
|                                |            | M18 | 14mr         | n     | E2E-X14MD1  | *1*2*3 | E2E-X14MD2  |    |
|                                |            | M30 | 2            | 0mm   | E2E-X20MD1  | *1*2*3 | E2E-X20MD2  |    |

\*1. A different frequency type is prepared. (E2E-X □D15; e.g.E2E-X3D15-N)
\*2. E2E models with a robotic cable are available as well. The model number of a model with a robotic cable has the suffix "-R" (e.g., E2E-X3D1-R).
\*3. Beside standard cable length 2 m the 5 m long cable is the prefered length. Please designate a cable length to the bottom of model number. (e.g. E2E-X2D1-N 5M)

#### DC 2-wire/Connector Models (3-wire with a self-diagnostic function.)

|                | Self                             |            |                  |                    |              |                |    | Mode                              | l              |                                   |               |   |
|----------------|----------------------------------|------------|------------------|--------------------|--------------|----------------|----|-----------------------------------|----------------|-----------------------------------|---------------|---|
| Con-<br>nector | diagnostic<br>output<br>function | Shape      | Sensing distance |                    | tance        | NO             |    | Appli-<br>cable<br>con-<br>nector | NC             | Appli-<br>cable<br>con-<br>nector |               |   |
|                |                                  | Shielded   | M12              | 🔄 3mm              |              | E2E-X3D1S-M1   |    | D                                 |                |                                   |               |   |
|                |                                  | M18        | <b>7</b> mm      |                    | E2E-X7D1S-M1 |                | D  |                                   |                |                                   |               |   |
|                | ON or OFF<br>delay 0 to 5 s      |            | M30              | 10mm               |              | E2E-X10D1S-M1  |    | D                                 |                |                                   |               |   |
|                | (adjustable)                     | Unshielded | M12              | 8mm                |              | E2E-X8MD1S-M1  |    | D                                 |                |                                   |               |   |
|                |                                  |            | M18              | 14mi               | m            | E2E-X14MD1S-M1 |    | D                                 |                |                                   |               |   |
|                |                                  |            | M30              | 2                  | 20mm         | E2E-X20MD1S-M1 |    | D                                 |                |                                   |               |   |
| M12            |                                  |            | M8               | 2mm                |              | E2E-X2D1-M1G   |    | А                                 | E2E-X2D2-M1G   | D                                 |               |   |
| IVITZ          |                                  | Shielded   | M12              | 🗌 3mm              |              | E2E-X3D1-M1G   | *1 | А                                 | E2E-X3D2-M1G   | D                                 |               |   |
|                |                                  |            | M18              | 7mm                |              | E2E-X7D1-M1G   | *1 | А                                 | E2E-X7D2-M1G   | D                                 |               |   |
|                |                                  | 6//        | M30              | 10mm               |              | E2E-X10D1-M1G  | *1 | А                                 | E2E-X10D2-M1G  | D                                 |               |   |
|                |                                  |            | M8               | 4mm                |              | E2E-X4MD1-M1G  |    | А                                 | E2E-X4MD2-M1G  | D                                 |               |   |
|                |                                  |            | Unshielded       | Unshielded         | M12          | 8mm            |    | E2E-X8MD1-M1G                     | *1             | А                                 | E2E-X8MD2-M1G | D |
|                | No                               |            | M18              | 14mi               | m            | E2E-X14MD1-M1G | *1 | А                                 | E2E-X14MD2-M1G | D                                 |               |   |
|                | INO                              | 6/4        | M30              | 2                  | 20mm         | E2E-X20MD1-M1G | *1 | А                                 | E2E-X20MD2-M1G | D                                 |               |   |
| Mo             |                                  | Shielded   | M8               | <b>2</b> mm        |              | E2E-X2D1-M3G   |    | G                                 | E2E-X2D2-M3G   | G                                 |               |   |
|                |                                  | Unshielded |                  | -M1G: e.g. E2E-X3D |              | E2E-X4MD1-M3G  |    | G                                 | E2E-X4MD2-M3G  | G                                 |               |   |

\*1. A different frequency type is prepared. (E2E-X D15-M1G; e.g.E2E-X3D15-M1G

#### DC 2-wired/Connector Extension Models

|            |     |             |                  | Operating |                 | Мо                   | del             |                      |
|------------|-----|-------------|------------------|-----------|-----------------|----------------------|-----------------|----------------------|
| Shape      |     | Sensing dis | Sensing distance |           | Yes polarity    | Applicable connector | No polarity     | Applicable connector |
| Shielded   | M12 | 🔄 3mm       |                  |           | E2E-X3D1-M1GJ   | Α                    | E2E-X3D1-M1J-T  | В                    |
|            | M18 | 7mm         |                  |           | E2E-X7D1-M1GJ   | Α                    | E2E-X7D1-M1J-T  | В                    |
|            | M30 | 10mm        |                  |           | E2E-X10D1-M1GJ  | Α                    | E2E-X10D1-M1J-T | В                    |
| Unshielded | M12 | 8mm         |                  | NO        | E2E-X8MD1-M1GJ  | Α                    |                 |                      |
|            | M18 | 14mi        | m                | -         | E2E-X14MD1-M1GJ | Α                    |                 |                      |
|            | M30 |             | 20mm             | _         | E2E-X20MD1-M1GJ | А                    |                 |                      |

Note: 1 . Since non-polarity type residual voltage is 5V, check interface conditions with connection load (e.g. ON voltage of PLC etc.). 2 . Standard cable length is 300 mm. Besides a cable length of 500 mm and 1 m type can be created.

#### DC 3-wire/Pre-wired Models

| Sh         | ape         | Sonoing die | topor   |   |             | Мс          | del         |             |
|------------|-------------|-------------|---------|---|-------------|-------------|-------------|-------------|
| 516        | ape         | Sensing dis | statice | ; | PNP - NO    | PNP - NC    | NPN - NO    | NPN - NC    |
|            | 4 mm dia.   | 0.8mm       |         |   | E2E-CR8B1   | E2E-CR8B2   | E2E-CR8C1   | E2E-CR8C2   |
|            | M5          | 1mm         |         |   | E2E-X1B1    | E2E-X1B2    | E2E-X1C1    | E2E-X1C2    |
| Shielded   | 5.4 mm dia. | 1mm         |         |   | E2E-C1B1    | E2E-C1B2    | E2E-C1C1    | E2E-C1C2    |
|            | M8          | 1.5mm       |         |   | E2EG-X1R5B1 | E2EG-X1R5B2 | E2EG-X1R5C1 | E2EG-X1R5C2 |
|            | M12         | 2mm         |         |   | E2EG-X2B1   | E2EG-X2B2   | E2EG-X2C1   | E2EG-X2C2   |
|            | M18         | 5mm         |         |   | E2EG-X5B1   | E2EG-X5B2   | E2EG-X5C1   | E2EG-X5C2   |
|            | M30         | 10mm        |         |   | E2EG-X10B1  | E2EG-X10B2  | E2EG-X10C1  | E2EG-X10C2  |
|            | M8          | 2mm         |         |   | E2EG-X2MB1  | E2EG-X2MB2  | E2EG-X2MC1  | E2EG-X2MC2  |
| Unshielded | M12         | 5mm         |         |   | E2EG-X5MB1  | E2EG-X5MB2  | E2EG-X5MC1  | E2EG-X5MC2  |
|            | M18         | 10mm        |         |   | E2EG-X10MB1 | E2EG-X10MB2 | E2EG-X10MC1 | E2EG-X10MC2 |
| 1          | M30         |             | ]18m    | m | E2EG-X18MB1 | E2EG-X18MB2 | E2EG-X18MC1 | E2EG-X18MC2 |

Beside standard cable length 2 m, the 5 m cable is the prefered length. Please allocate a cable length to the bottom of model number. (e.g. E2EG-X2C1-5M)

#### DC 3-wire/Connector Models

| Connector | Shap       | •   | Sensing dis   | anco  |                | M              | odel           |                |
|-----------|------------|-----|---------------|-------|----------------|----------------|----------------|----------------|
| Connector | Shap       | e   | Sensing us    | lance | PNP - NO       | PNP - NC       | NPN - NO       | NPN - NC       |
|           | Shielded   | M8  | <b>1</b> .5mm |       | E2EG-X1R5B1-M1 | E2EG-X1R5B2-M1 | E2EG-X1RC1-M1  | E2EG-X1R5C2-M1 |
| M12       |            | M12 | 2mm           |       | E2EG-X2B1-M1   | E2EG-X2B2-M1   | E2EG-X2C1-M1   | E2EG-X2C2-M1   |
|           |            | M18 | 5mm           |       | E2EG-X5B1-M1   | E2EG-X5B2-M1   | E2EG-X5C1-M1   | E2EG-X5C2-M1   |
|           |            | M30 | 10mm          |       | E2EG-X10B1-M1  | E2EG-X10B2-M1  | E2EG-X10C1-M1  | E2EG-X10C2-M1  |
| IVI I Z   |            | M8  | 2mm           |       | E2EG-X2MB1-M1  | E2EG-X2MB2-M1  | E2EG-X2MC1-M1  | E2EG-X2MC2-M1  |
|           | Unshielded | M12 | 5mm           |       | E2EG-X5MB1-M1  | E2EG-X5MB2-M1  | E2EG-X5MC1-M1  | E2EG-X5MC2-M1  |
|           |            | M18 | 10mm          |       | E2EG-X10MB1-M1 | E2EG-X10MB2-M1 | E2EG-X10MC1-M1 | E2EG-X10MC2-M1 |
|           | 18//A      | M30 |               | 18mm  | E2EG-X18MB1-M1 | E2EG-X18MB2-M1 | E2EG-X18MC1-M1 | E2EG-X18MC2-M1 |
| Mo        | Shielded   | Mo  | <b>1</b> .5mm |       | E2EG-X1R5B1-M3 | E2EG-X1R5B2-M3 | E2EG-X1R5C1-M3 | E2EG-X1R5C2-M3 |
| M8<br>I   |            | M8  | <b>2</b> mm   |       | E2EG-X2MB1-M3  | E2EG-X2MB2-M3  | E2EG-X2MC1-M3  | E2EG-X2MC2-M3  |

#### AC 2-wire/Pre-wired Models

| Shap       |     | Sensing distance | Mo            | del           |
|------------|-----|------------------|---------------|---------------|
| Shap       |     | Sensing distance | NO            | NC            |
|            | M8  | 1.5mm            | E2E-X1R5Y1    | E2E-X1R5Y2    |
| Shielded   | M12 | 2mm              | E2E-X2Y1 *1   | E2E-X2Y2 *1   |
|            | M18 | 5mm              | E2E-X5Y1 *1   | E2E-X5Y2 *1   |
| 122        | M30 | 10mm             | E2E-X10Y1 *1  | E2E-X10Y2 *1  |
|            | M8  | 2mm              | E2E-X2MY1     | E2E-X2MY2     |
| Unshielded | M12 | 5mm              | E2E-X5MY1 *1  | E2E-X5MY2 *1  |
| ₽ <u></u>  | M18 | 10mm             | E2E-X10MY1 *1 | E2E-X10MY2 *1 |
|            | M30 | 18mm             | E2E-X18MY1 *1 | E2E-X18MY2 *1 |

\*1. A different frequency type is prepared. (E2E-X □Y□5; e.g.E2E-X5Y15)

#### AC 2-wire/Connector Models

|           |            |     |                  |      |      |                      | Мос        | lel                  |            |
|-----------|------------|-----|------------------|------|------|----------------------|------------|----------------------|------------|
| Connector | Shape      |     | Sensing distance |      |      | operating configura- | Applicable | operating configura- | Applicable |
|           |            |     |                  |      |      | tion, NO             | connector* | tion, NC             | connector* |
|           | Shielded   | M12 | 2mm              |      |      | E2E-X2Y1-M1          | E          | E2E-X2Y2-M1          | F          |
|           |            | M18 | 5m               | hm   |      | E2E-X5Y1-M1          | E          | E2E-X5Y2-M1          | F          |
| M12       |            | M30 |                  | 10mm |      | E2E-X10Y1-M1         | Е          | E2E-X10Y2-M1         | F          |
| IVI I Z   | Unshielded | M12 | 5m               | hm   |      | E2E-X5MY1-M1         | E          | E2E-X5MY2-M1         | F          |
|           |            | M18 |                  | 10mm |      | E2E-X10MY1-M1        | E          | E2E-X10MY2-M1        | F          |
|           | M30        |     |                  |      | 18mm | E2E-X18MY1-M1        | E          | E2E-X18MY2-M1        | F          |

\* Refer to E-20 page for details.

### **Rating/Performance**

### DC 2-wire Models (E2E-X□D□)

|                                      | Size                         | Ν                                                                                                | 18                                                                                                                | Μ                | 12                         | N                | 118              | М                 | M30            |  |
|--------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------|----------------------------|------------------|------------------|-------------------|----------------|--|
|                                      | Shielded                     | Shielded                                                                                         | Unshielded                                                                                                        | Shielded         | Unshielded                 | Shielded         | Unshielded       | Shielded          | Unshielded     |  |
| Item                                 | Model                        | E2E<br>-X2D□                                                                                     | E2E<br>-X4MD⊡                                                                                                     | E2E<br>-X3D□     | E2E<br>-X8MD⊡              | E2E<br>-X7D□     | E2E<br>-X14MD⊡   | E2E<br>-X10D□     | E2E<br>-X20MD□ |  |
| Sensing                              | distance                     | 2 mm ±10%                                                                                        | 4 mm ±10%                                                                                                         | 3 mm ±10%        | 8 mm ±10%                  | 7 mm ±10%        | 14 mm ±10%       | 10 mm ±10%        | 20 mm ±10%     |  |
| Setting di                           | istance*1                    | 0 to 1.6 mm                                                                                      | 0 to 3.2 mm                                                                                                       | 0 to 2.4 mm      | 0 to 6.4 mm                | 0 to 5.6 mm      | 0 to 11.2 mm     | 0 to 8 mm         | 0 to 16 mm     |  |
| Differenti<br>distance               | al                           | 15% max. of distance                                                                             | sensing                                                                                                           | 10% max.         |                            |                  |                  |                   |                |  |
| Sensing                              | object                       | Ferrous meta                                                                                     | al (Sensitivity                                                                                                   | lowers with no   | on-ferrous met             | als)             |                  |                   |                |  |
| Standard<br>object (m                | •                            | 8 x 8 x 1 mm                                                                                     | 20 x 20 x 1 mm                                                                                                    | 12 x 12 x 1 mm   | 30 x 30 x 1 mm             | 18 x 18 x 1 mm   | 30 x 30 x 1 mr   | n                 | 54 x 54 x 1 mm |  |
| Response<br>frequency                |                              | 1.5 kHz                                                                                          | 1 kHz                                                                                                             |                  | 0.8 kHz                    | 0.5 kHz          | 0.4 kHz          |                   | 0.1 kHz        |  |
| Power su<br>(Operatin<br>voltage ra  | ng                           | 12 to 24 VDC (10 to 30 VDC) ripple (p-p): 10% max.                                               |                                                                                                                   |                  |                            |                  |                  |                   |                |  |
| Leakage                              | current                      | 0.8 mA max.                                                                                      | 8 mA max.                                                                                                         |                  |                            |                  |                  |                   |                |  |
| Control                              | Switch-<br>ing ca-<br>pacity | 3 to 100 mA                                                                                      | 3 to 100 mA (5 to 100 mA for -M1J-T models), Diagnostic output: 50 mA for D1 (5) S models                         |                  |                            |                  |                  |                   |                |  |
| output                               | Residu-<br>al volt-<br>age*3 | 3.0 V max. (under load current of 100 mA with cable length of 2 m), 5.0 V min. for -M1J-T models |                                                                                                                   |                  |                            |                  |                  |                   |                |  |
| Indicator                            | lamp                         | D1 type: Ope                                                                                     | eration indicat                                                                                                   | or (red), opera  | ation setting in           | dicator (green)  | D2 type: Opera   | ation indicator ( | red)           |  |
| Operating<br>(with sen<br>ject appro | sing ob-                     | D1 type: NO<br>D2 type: NC                                                                       |                                                                                                                   |                  |                            |                  |                  |                   |                |  |
| Diagnosti<br>delay                   | ic output                    | 0.3 to 1s                                                                                        |                                                                                                                   |                  |                            |                  |                  |                   |                |  |
| Protective                           | e circuits                   | Surge absor                                                                                      | ber, load shor                                                                                                    | t-circuit proteo | ction (for contr           | ol and diagnos   | tic output)      |                   |                |  |
| Ambient<br>temperat                  | ure                          | Operating: -2                                                                                    | 25°C to 70°C,                                                                                                     | Storage: -40°    | C to 85°C (wit             | h no icing or co | ondensation)     |                   |                |  |
| Ambient                              | humidity                     | Operating/St                                                                                     | orage: 35% to                                                                                                     | 95%RH (with      | h no condensa              | tion)            |                  |                   |                |  |
| Tempera<br>influence                 |                              |                                                                                                  | sensing dis-<br>within temper-<br>-25°C to 70°C                                                                   | ±10% max. s      | sensing distan             | ce at 23°C with  | nin temperature  | range of -25°C    | to 70°C        |  |
| Voltage i                            | nfluence                     | ±1% max. of                                                                                      | sensing dista                                                                                                     | nce in rated v   | voltage range ±            | -15%             |                  |                   |                |  |
| Insulatior resistanc                 |                              | 50 M $\Omega$ min.                                                                               | (500 VDC) be                                                                                                      | tween energiz    | zed part and ca            | ise              |                  |                   |                |  |
| Dielectric                           | strength                     | gth 1000 VAC 50/60 Hz for 1 min between energized part and case                                  |                                                                                                                   |                  |                            |                  |                  |                   |                |  |
| Vibration resistanc                  |                              | 10 to 55 Hz, 1.5 mm double amplitude for 2 hours each in X, Y, and Z directions                  |                                                                                                                   |                  |                            |                  |                  |                   |                |  |
| Shock re                             | sistance                     | Destruction:<br>10 times eac<br>Z directions                                                     |                                                                                                                   | Destruction:     | 1,000 m/s <sup>2</sup> for | 10 times each    | ı in X, Y, and Z | directions        |                |  |
| Protective structure                 |                              | Pre-wired, C                                                                                     | onnector Exte                                                                                                     | nsion models     | : IEC60529 IP              | 67 Connecto      | or type: IP67    |                   |                |  |
| Connection method                    | on                           |                                                                                                  | Pre-wired models (Standard length: 2 m), Connector models, Connector extension models<br>Standard length: 300 mm) |                  |                            |                  |                  |                   |                |  |

|                                |                                        |               |               |              |               | 1             |                |               |                |  |
|--------------------------------|----------------------------------------|---------------|---------------|--------------|---------------|---------------|----------------|---------------|----------------|--|
|                                | Size                                   | N             | 18            | M12          |               | M             | 118            | M30           |                |  |
|                                | Shielded Shielded Unshielded           |               | Shielded      | Unshielded   | Shielded      | Unshielded    | Shielded       | Unshielded    |                |  |
| Item                           | Model                                  | E2E<br>-X2D□  | E2E<br>-X4MD⊡ | E2E<br>-X3D□ | E2E<br>-X8MD⊡ | E2E<br>-X7D□  | E2E<br>-X14MD⊡ | E2E<br>-X10D□ | E2E<br>-X20MD□ |  |
| state)                         | Pre-wired models                       | Approx. 45 g  |               | Approx. 55 g |               | Approx. 130 g | ]              | Approx. 180 g |                |  |
| Weight (Packed s               | Sensor<br>with<br>Connec-<br>tor Relay |               |               | Approx.40g   | Approx.40g    |               |                | Approx. 110 g |                |  |
| Weig                           | Connec-<br>tor                         | Approx. 10 g  | l             | Approx. 20 g |               | Approx. 40g   |                | Approx. 90 g  |                |  |
| Moto                           | Case                                   | Stainless ste | el (SUS303)   | Brass        |               |               |                |               |                |  |
| Mate-<br>rial                  | Sensing surface                        | PBT           |               | •            |               |               |                |               |                |  |
| Accessories Instruction manual |                                        |               |               |              |               |               |                |               |                |  |
| ** **                          |                                        |               |               |              |               |               |                |               |                |  |

\*1. Use within a range where the green indicator is lit. (Excluding the D2 models.)
\*2. The response frequencies for DC switching are average values measured on condition that the distance between each sensing object is twice as large as the size of the sensing object and the sensing distance set is half of the maximum sensing distance.
\*3. Since the residual voltage turns 5V when using an M1J-T type, please use it after checking interface conditions with connection device.

#### DC 3-wire Models (E2EG)

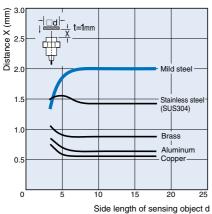
|                                | Size                                | М                                                  | 8               | Ν              | M12                        | M                | 18                       |              | M30             |  |  |
|--------------------------------|-------------------------------------|----------------------------------------------------|-----------------|----------------|----------------------------|------------------|--------------------------|--------------|-----------------|--|--|
|                                | Shielded                            | Shielded                                           | Unshielded      | Shielded       | Unshielded                 | Shielded         | Unshielded               | Shielded     | Unshielded      |  |  |
| L                              |                                     | E2EG                                               | E2EG            | E2EG           | E2EG                       | E2EG             | E2EG                     | E2EG         | E2EG            |  |  |
| Item                           |                                     | -X1R5B□/C□                                         | -X2MB□/C□       | -X2B□/C□       | -X5MB□/C□                  | -X5B□/C□         | -X10MB□/C□<br>10 mm ±10% | -X10B□/C□    | -X18MB□C□       |  |  |
| Sensing                        | distance                            | 1.5 mm ±10%                                        |                 |                | 5 mm ±10%                  |                  |                          | 18 mm ±10%   |                 |  |  |
| Setting                        | distance                            | 0 to 1.2 mm 0 to 1.6 mm 0 to 4 mm 0 to 8 mm 0 to 1 |                 |                |                            |                  |                          |              |                 |  |  |
| Differen                       | tial distance                       | 10% max.                                           |                 |                |                            |                  |                          |              |                 |  |  |
| Sensing                        | j object                            | Ferrous metal                                      | (Sensitivity lo | owers with no  | on-ferrous met             | als)             | 1                        |              | 1               |  |  |
|                                | d sensing<br>mild steel)            | 8 x 8 x 1 mm                                       | 12 x 12 x 1 m   | ım             | 15 x 15 x 1 mm             | 18 x 18 x 1 mm   | 30 x 30 x 1 m            | m            | 54 x 54 x 1 mm  |  |  |
| Respon                         | se frequency*1                      | 2 kHz                                              | 0.8 kHz         | 1.5 kHz        | 0.4 kHz                    | 0.6 kHz          | 0.2 kHz                  | 0.4 kHz      | 0.1 kHz         |  |  |
| Power s<br>(Operati<br>voltage | ing                                 | 12 to 24 VDC                                       | ripple (p-p):   | 10% max.,(1    | 0 to 40 VDC)               |                  |                          |              |                 |  |  |
| Current                        | consumption                         | 13 mA max.                                         |                 |                |                            |                  |                          |              |                 |  |  |
|                                | Switching ca-<br>bacity             | 200 mA max.                                        |                 |                |                            |                  |                          |              |                 |  |  |
|                                | Residual volt-<br>Ige               | 2 V max. (und                                      | er load curre   | nt of 200 mA   | with cable len             | gth of 2 m)      |                          |              |                 |  |  |
| Indicato                       | r lamp                              | Operation indicator (yellow)                       |                 |                |                            |                  |                          |              |                 |  |  |
|                                | ng status<br>nsing object<br>ching) | B1/C1 models<br>B2/C2 models                       |                 |                |                            |                  |                          |              |                 |  |  |
| Protectiv                      | ve circuits                         | Reverse conn                                       | ection protect  | tion, surge al | bsorber, load s            | hort-circuit pro | tection                  |              |                 |  |  |
| Ambient                        | t temperature                       | Operating/Sto                                      | rage: -40°C te  | o 70^∘C (with  | n no icing or co           | ndensation)      |                          |              |                 |  |  |
| Ambient                        | t humidity                          | Operating/Sto                                      | rage: 35% to    | 95%RH          |                            |                  |                          |              |                 |  |  |
| Temper                         | ature influence                     | ±15% max. of<br>at 23°C within                     |                 |                |                            | ure range of -4  | 0°C to 70°C ±1           | 0% max. of s | ensing distance |  |  |
| Voltage                        | influence                           | ±1% max. of s                                      | ensing distar   | nce within rat | ed voltage ran             | ge ±15%          |                          |              |                 |  |  |
| Insulatio                      | on resistance                       | 50 MΩ min. (5                                      | 00 VDC) bet     | ween energiz   | zed part and ca            | se               |                          |              |                 |  |  |
| Dielectri                      | ic strength                         | 1000 VAC 50/                                       | 60 Hz for 1 m   | nin between e  | energized part             | and case         |                          |              |                 |  |  |
| Vibratio                       | n resistance                        | 10 to 55 Hz, 1                                     | .5 mm double    | e amplitude f  | or 2 hours eac             | n in X, Y, and Z | directions               |              |                 |  |  |
| Shock re                       | esistance                           | Destruction: 5<br>10 times each<br>Z directions    |                 | Destruction:   | 1,000 m/s <sup>2</sup> for | 10 times each    | in X, Y, and Z           | directions   |                 |  |  |
| Protectiv                      | ve structure                        | IEC60529 IP6                                       | 7               |                |                            |                  |                          |              |                 |  |  |
| Connec                         | tion method                         | Pre-wired mod                                      | dels (Standar   | d length: 2 m  | i), Connector n            | nodels           |                          |              |                 |  |  |
| Weight                         | Pre-wired models                    | Approx. 55 g                                       |                 | 65 g           |                            | Approx. 140 g    |                          | Approx. 190  | g               |  |  |
| -                              | Connector                           | Approx. 10 g                                       |                 | Approx. 20 g   | ]                          | Approx. 40g      |                          | Approx. 90 g | 9               |  |  |
|                                | Case                                | Stainless steel (SUS303) Brass                     |                 |                |                            |                  |                          |              |                 |  |  |
| Material                       | Sensing surface                     | РВТ                                                |                 |                |                            |                  |                          |              |                 |  |  |
| Accessories Instruction manual |                                     |                                                    |                 |                |                            |                  |                          |              |                 |  |  |
| Accessories Instruction manual |                                     |                                                    |                 |                |                            |                  |                          |              |                 |  |  |

\*1. The response frequencies for DC switching are average values measured on condition that the distance between each sensing object is twice as large as the size of the sensing object and the sensing distance set is half of the maximum sensing distance.

#### DC 3-wire Models (E2E-C□C□/B□, E2E-X1C□/B□)

|                                                | Size               | 4 mm dia.                                                                       | 5.4 mm dia.                    | M5        |  |  |  |
|------------------------------------------------|--------------------|---------------------------------------------------------------------------------|--------------------------------|-----------|--|--|--|
|                                                | Shielded           |                                                                                 | Shielded                       |           |  |  |  |
| Item                                           | Model              | E2E-CR8C/B                                                                      | E2E-X1C/B                      | E2E-C1C/B |  |  |  |
| Sensing dista                                  | nce                | 0.8 mm ±15%                                                                     | mm ±15% 1 mm ±15%              |           |  |  |  |
| Setting distan                                 | ice                | 0 to 0.5 mm                                                                     | 0 to 0.7 mm                    |           |  |  |  |
| Differential di                                | stance             | 15% max. of sensing distance                                                    |                                |           |  |  |  |
| Sensing obje                                   | ct                 | Ferrous metal (Sensitivity lowers w                                             | ith non-ferrous metals)        |           |  |  |  |
| Standard sen                                   | sing object        | Mild steel, 5 x 5 x 1 mm                                                        |                                |           |  |  |  |
| Response fre                                   | quency             | 3 kHz                                                                           |                                |           |  |  |  |
| Power supply<br>(Operating vo                  |                    | 12 to 24 VDC (10 to 30 VDC) ripple                                              | e (p-p): 10% max.              |           |  |  |  |
| Current consu                                  | umption            | 17 mA max.                                                                      |                                |           |  |  |  |
| Control out-                                   | Switching capacity | Open collector output 100 mA max                                                | . (30 VDC max.)                |           |  |  |  |
| put                                            | Residual voltage   | 2 V max. (under load current of 100                                             | 0 mA with cable length of 2 m) |           |  |  |  |
| Indicator lamp                                 | 5                  | Operation indicator (red)                                                       | eration indicator (red)        |           |  |  |  |
| Operating sta<br>(with sensing<br>approaching) |                    | C1/B1 type: NO<br>C2/B2 type: NC                                                |                                |           |  |  |  |
| Protective cire                                | cuits              | Reverse connection protection, surge absorber                                   |                                |           |  |  |  |
| Ambient temp                                   | oerature           | Operating/Storage: -25°C to 70°C (with no icing or condensation)                |                                |           |  |  |  |
| Ambient hum                                    | idity              | Operating/Storage: 35% to 95%RH                                                 |                                |           |  |  |  |
| Temperature                                    | influence          | ±15% max. of sensing distance at 23°C within temperature range of -25°C to 70°C |                                |           |  |  |  |
| Voltage influe                                 | ence               | $\pm 2.5\%$ max. of sensing distance within rated voltage range $\pm 25\%$      |                                |           |  |  |  |
| Insulation res                                 | istance            | 50 M $\Omega$ min. (500 VDC) between energized part and case                    |                                |           |  |  |  |
| Dielectric stre                                | ength              | 500 VAC 50/60 Hz for 1 min between energized part and case                      |                                |           |  |  |  |
| Vibration resi                                 | stance             | 10 to 55 Hz, 1.5 mm double amplitude for 2 hours each in X, Y, and Z directions |                                |           |  |  |  |
| Shock resista                                  | nce                | Destruction: 500 m/s <sup>2</sup> for 10 times each in X, Y, and Z directions   |                                |           |  |  |  |
| Protective str                                 | ucture             | IEC60529 IP67                                                                   |                                |           |  |  |  |
| Connection m                                   | nethod             | Pre-wired models (Standard length: 2 m)                                         |                                |           |  |  |  |
| Weight (Pack                                   | ed state)          | 30 g                                                                            |                                |           |  |  |  |
|                                                | Case               | Stainless steel (SUS303)                                                        | Brass                          |           |  |  |  |
| Material                                       | Sensing surface    | Heat-resistant ABS resin                                                        |                                |           |  |  |  |
| Accessories                                    |                    | Instruction manual                                                              |                                |           |  |  |  |

\* The response frequencies for DC switching are average values measured on condition that the distance between each sensing object is twice as large as the size of the sensing object and the sensing distance set is half of the maximum sensing distance.


#### AC 2-wire Models (E2E-X□Y□)

|                                | Size                                | M8                                                                                                                                                            |                                                                          | M12            |                  | M18                                                                                                   |             | M30         |                |  |
|--------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------|------------------|-------------------------------------------------------------------------------------------------------|-------------|-------------|----------------|--|
|                                | Shielded                            | Shielded                                                                                                                                                      | Unshielded                                                               | Shielded       | Unshielded       | Shielded                                                                                              | Unshielded  | Shielded    | Unshielded     |  |
|                                |                                     | E2E                                                                                                                                                           | E2E                                                                      | E2E            | E2E              | E2E                                                                                                   | E2E         | E2E         | E2E            |  |
| ltem                           | Model                               | -X1R5Y□                                                                                                                                                       | -X2MY□                                                                   | -X2Y□          | -X5MY□           | -X5Y□                                                                                                 | -X10MY□     | -X10Y□      | -X18MY□        |  |
| Sensing                        | distance                            | 1.5 mm ±10%                                                                                                                                                   | 2 mm ±10%                                                                |                | 5 mm ±10%        |                                                                                                       | 10 mm ±10%  |             | 18 mm ±10%     |  |
| Setting                        | distance                            | 0 to 1.2 mm                                                                                                                                                   | 0 to 1.6 mm                                                              |                | 0 to 4 mm        |                                                                                                       | 0 to 8 mm   |             | 0 to 14 mm     |  |
| Differenti                     | al distance                         | 10% max.                                                                                                                                                      |                                                                          |                |                  |                                                                                                       |             |             |                |  |
| Sensing                        | object                              | Ferrous meta                                                                                                                                                  | I (Sensitivity                                                           | lowers with n  | on-ferrous meta  | ls)                                                                                                   | T           |             | T              |  |
|                                | d sensing<br>Vild steel)            | 8 x 8 x 1 mm                                                                                                                                                  | 8 x 8 x 1 mm 12 x 12 x 1 mm 15 x 15 x 1 mm 18 x 18 x 1 mm 30 x 30 x 1 mm |                |                  |                                                                                                       |             |             | 54 x 54 x 1 mm |  |
| Respons                        | e frequency                         | 25 Hz                                                                                                                                                         |                                                                          |                |                  |                                                                                                       |             |             |                |  |
| Power s<br>(Operati<br>voltage |                                     | 24 to 240 VA                                                                                                                                                  | C 50/60Hz (2                                                             | 0 to 264 VAC   | C)               |                                                                                                       |             |             |                |  |
| Leakage                        | e current                           | 1.7 mA max.                                                                                                                                                   |                                                                          |                |                  |                                                                                                       |             |             |                |  |
|                                | witching apacity*2                  | 5 to 100 mA                                                                                                                                                   |                                                                          | 5 to 200 mA    | ۱.               | 5 to 300 mA                                                                                           |             |             |                |  |
|                                | lesidual<br>oltage                  | Refer to Spec                                                                                                                                                 | cifications                                                              |                |                  |                                                                                                       |             |             |                |  |
| Indicato                       | r lamp                              | Operation inc                                                                                                                                                 | licator (red)                                                            |                |                  |                                                                                                       |             |             |                |  |
| (with ser                      | ng status<br>nsing ob-<br>roaching) | Y1 type: NO<br>Y2 type: NC                                                                                                                                    |                                                                          |                |                  |                                                                                                       |             |             |                |  |
| Protectiv                      | ve circuits                         | Surge absorb                                                                                                                                                  | ber                                                                      |                |                  |                                                                                                       |             |             |                |  |
| Ambient<br>ture                | t tempera-                          | Operating: -25°C to 70°CPreservation: -25°C to70°C (with no icing)                                                                                            |                                                                          |                |                  |                                                                                                       |             |             |                |  |
| Ambient                        | t humidity                          | Operating/Storage: 35% to 95%RH (with no condensation)                                                                                                        |                                                                          |                |                  |                                                                                                       |             |             |                |  |
| Tempera<br>ence                | ature influ-                        | ±10% max. of<br>tance at 23°C v<br>ature range of                                                                                                             | within temper-                                                           |                |                  | nce at 23°C within temperature range -40°C to 85°C±10%<br>23°C within temperature range -25°C to 70°C |             |             |                |  |
| Voltage                        | influence                           | ±1% max. of                                                                                                                                                   | sensing dista                                                            | nce within ra  | ted voltage rang | e ±15%                                                                                                |             |             |                |  |
| Insulatio<br>resistan          |                                     | 50 M $\Omega$ min. (                                                                                                                                          | 500 VDC) be                                                              | tween energi   | zed part and cas | se                                                                                                    |             |             |                |  |
| Dielectri                      | c strength                          | 4,000 VAC fo                                                                                                                                                  | or 1 min betwe                                                           | en energize    | d parts and case | e (2,000 VAC for                                                                                      | r M8 types) |             |                |  |
| Vibratior<br>resistan          |                                     | 10 to 55 Hz,                                                                                                                                                  | 1.5 mm doubl                                                             | e amplitude    | for 2 hours each | in X, Y, and Z o                                                                                      | directions  |             |                |  |
| Shock re                       | esistance                           | Destruction: 500 m/s² for         10 times each in X, Y, and         Destruction: 1,000 m/s² for 10 times each in X, Y, and Z directions         Z directions |                                                                          |                |                  |                                                                                                       |             |             |                |  |
| Protectiv                      | ve structure                        | IEC60529 IP                                                                                                                                                   | IEC60529 IP67                                                            |                |                  |                                                                                                       |             |             |                |  |
| Connect                        | tion method                         | Pre-wired mo                                                                                                                                                  | dels (Standa                                                             | rd length: 2 n | n), Connector m  | odels                                                                                                 |             |             |                |  |
| Weight                         | Pre-wired models                    | Approx. 45 g                                                                                                                                                  |                                                                          | Approx. 55     | g                | Approx. 130 g                                                                                         |             | Approx. 180 | g              |  |
|                                | Connector                           | Approx. 10 g                                                                                                                                                  |                                                                          | Approx. 20     | g                | Approx. 40g                                                                                           |             | Approx. 90  | 9              |  |
| Matori                         | Case                                | Stainless stee                                                                                                                                                | el (SUS303)                                                              | Brass          |                  |                                                                                                       |             |             |                |  |
| Materi-                        | Sensing                             | PBT (polybut                                                                                                                                                  | ylene terepht                                                            | halato)        |                  |                                                                                                       |             |             |                |  |
| al                             | surface                             | т вт (рогува                                                                                                                                                  | yiene terepitt                                                           | nalate)        |                  |                                                                                                       |             |             |                |  |

\*1. For the 24 VAC supply to any of the aforesaid models, ensure that the operating ambient temperature range exceeds -25°C.
 \*2. When using M18-or M30-sized E2E within an ambient temperature range of 70°C to 85°C, ensure that E2E has a control output of 200 mA maximum.

### **Characteristic data (typical)**

#### Sensing Distance vs. Sensing Object E2E-X2D



Mild s

Stainless steel (SUS304)

60

70

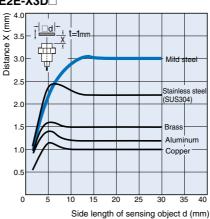
Brass Aluminum Copper

50

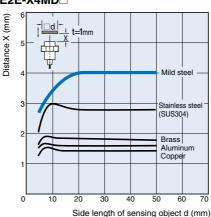
Side length of sensing object d (mm)

E2E-X10D

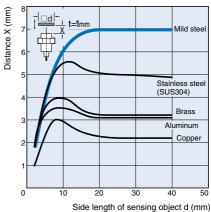
da ba 10


ψ

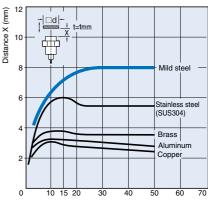
Distance X (mm)


0

E2E-X14MD

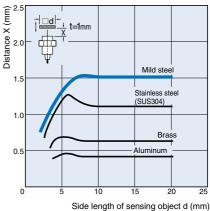

E2E-X3D



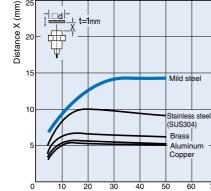

#### E2E-X4MD



#### E2E-X7D

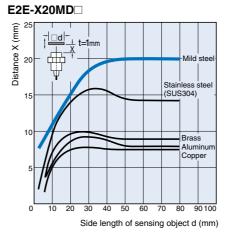


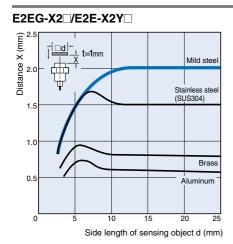

#### E2E-X8MD



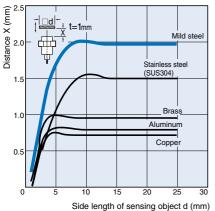

Side length of sensing object d (mm)



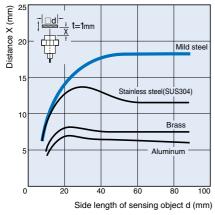


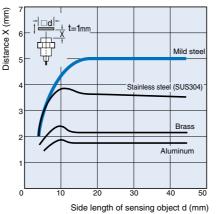




20 30 40

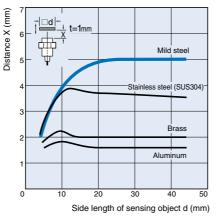
Side length of sensing object d (mm)



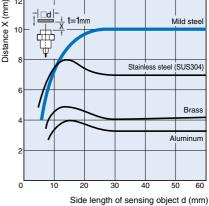




#### E2EG-X2M□/E2E-X2MY□

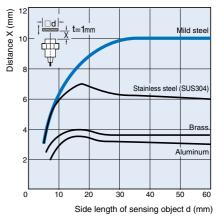



#### E2EG-X18M□/E2E-X18MY□

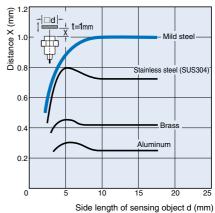



#### E2EG-X5□/E2E-X5Y□




#### E2EG-X5M□/E2E-X5MY□

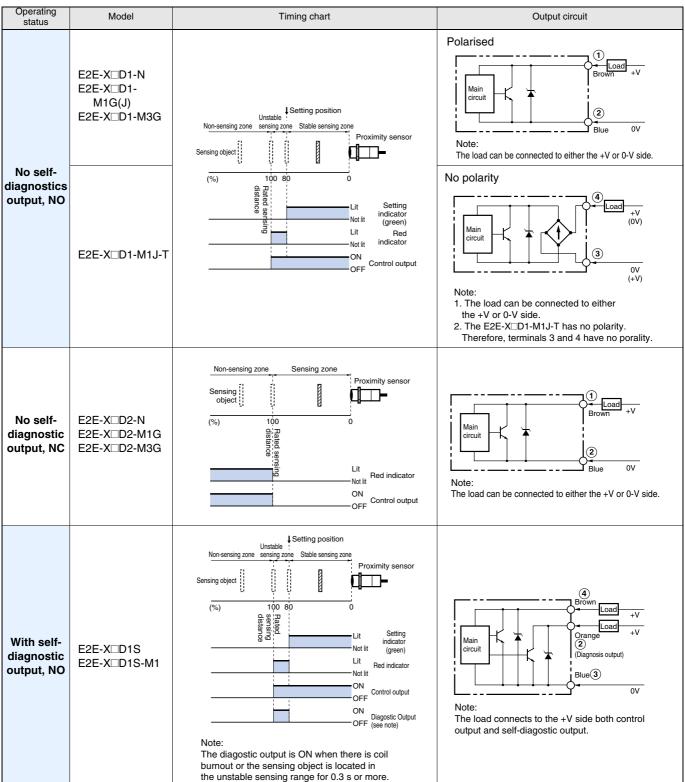



E2EG-X10 /E2E-X10Y

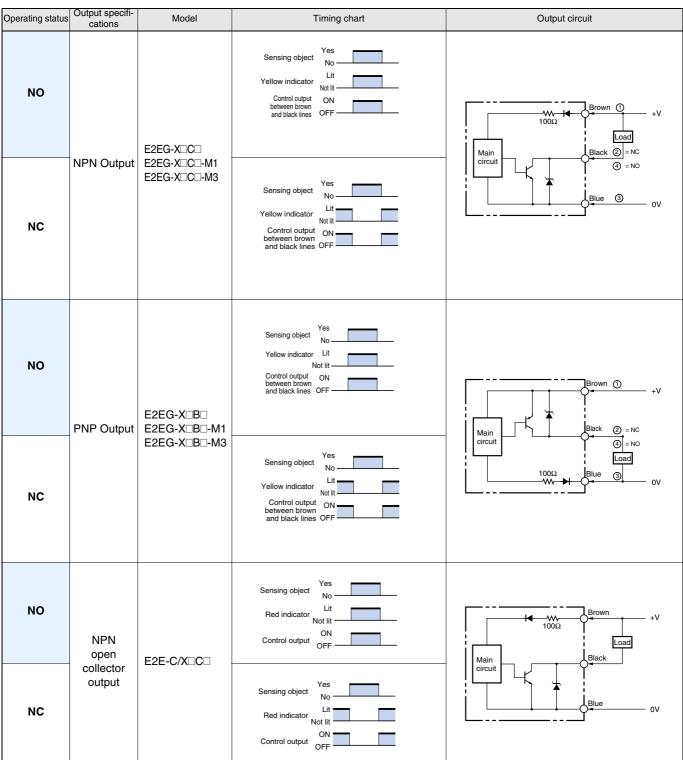


#### E2EG-X10M□/E2E-X10MY□




#### E2E-X1□/-C1□




#### E2E-CR8 Distance X (mm) 0.1 0 0.8 □d t=1mm Mild steel 0.6 Stainless steel(SUS304) 0.4 Bras Aluminum 0.2 Copper 0 30 20 25 5 15 Side length of sensing object d (mm)

### **Output Circuit Diagram**

#### DC 2-wire Models (E2E-XDD)




#### DC 3-wire



| Operating status | Output specifications    | Model      | Timing chart                                                                   | Output circuit                                                                                                 |
|------------------|--------------------------|------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| NO               | PNP<br>open<br>collector | E2E-C/X□B□ | Sensing object Yes<br>No<br>Red indicator<br>Control output OR<br>OFF          | Hain<br>Grout                                                                                                  |
| NC               | output                   |            | Sensing object Yes<br>No<br>Red indicator Lit<br>Not lit<br>Control output OFF | Circuit<br>Load<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ |

#### AC 2-wire Models



### **Sensor I/O Connectors**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Connector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | Applicable |                   |                | Figure |                 |              |     |     |     |   |                 |               |                |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|-------------------|----------------|--------|-----------------|--------------|-----|-----|-----|---|-----------------|---------------|----------------|---|
| Screw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cable<br>length | connector  | Part number       | mode           | No.*1  |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |            |                   | E2E-X□D1-M1G   |        |                 |              |     |     |     |   |                 |               |                |   |
| Screw     Shape     Cable<br>length     Applicable<br>connector       Straight type $A$ XS       Straight type $B$ XS       Straight type $B$ XS       M12 $A$ XS       M12 $A$ XS       L type $A$ XS $B$ XS $A$ $B$ XS                                                                                                                                                                                                                                                                                                                                                                       | X52F-D421-DA0-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2E-XD1-M1GJ    | 1          |                   |                |        |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Shape         Cable<br>Length         Applicable<br>connector         Part number         Applicable<br>mode<br>mode           Straight type         A         XS2F-D421-DA0-A         E2E-XID1-M1G<br>E2E-XID1-M1GJ<br>E2E-XID1-M1GJ<br>E2E-XID1-M1GJ<br>E2E-XID1-M1GJ<br>E2E-XID1-M1GJ<br>E2E-XID1-M1GA<br>E2E-XID1-M11GA<br>E2E-XID1-M11GA<br>E2E-XID1-M11<br>E           Straight type         A         XS2F-D421-D80-A         E2E-XID1-M1G<br>E2E-XID1-M11<br>E           B         XS2F-D421-D80-A         E2E-XID1-M1<br>E2E-XID1-M11<br>E           B         XS2F-D421-G80-A         E2E-XID1-M1G<br>E2E-XID1-M1G<br>E2E-XID1-M1G<br>E2E-XID1-M1G<br>E2E-XID1-M1G<br>E2E-XID1-M1G<br>E2E-XID1-M1G<br>E2E-XID1-M11<br>E           B         XS2F-D421-G80-A         E2E-XID1-M1G<br>E2E-XID1-M11<br>E2E-XID1-M11<br>E2E-XID1-M11<br>E2E-XID1-M11<br>E2E-XID1-M11<br>E2E-XID1-M11<br>E2E-XID1-M11<br>E2E-XID1-M11<br>E2E-XID1-M11<br>E2E-XID1-M11<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M11G<br>E2E-XID1-M | E2E-XD1-M1J-T   | 2          |                   |                |        |                 |              |     |     |     |   |                 |               |                |   |
| ScrewShapeCable<br>lengthApplicable<br>connectorStraight type $2 \text{ m}$ $A$ XS2F-D4 $B$ XS2F-D4 $B$ XS2F-D4 $B$ XS2F-D4 $E$ XS2F-D4 $E$ XS2F-D4 $E$ XS2F-D4 $B$ < | X52F-D421-DC0-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2EG-XIII-M1    | 7          |                   |                |        |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 m             | _          |                   | E2E-X□D2-M1(G) | 5      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | D          | XS2F-D421-D80-A   | E2E-X D1S-M1   | 4      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Shape         length         connector         model         model           Image: Straight type         2 m         A         XS2F-D421-D00-A         E2E-XCD1-M1G           B         XS2F-D421-D00-A         E2E-XCD1-M1G         E2E-XCD1-M1G           B         XS2F-D421-D00-A         E2E-XCD1-M1G           E         XS2F-D421-D00-A         E2E-XCD1-M1G           E         XS2F-D421-D00-A         E2E-XCD1-M1G           E         XS2F-D421-D00-A         E2E-XCD1-M1G           E         XS2F-D421-G00-A         E2E-XCD1-M1G           E         XS2F-D421-G00-A         E2E-XCD1-M1G           B         XS2F-D421-G00-A         E2E-XCD1-M1G           E         XS2F-D421-G00-A         E2E-XCD1-M1G           E         XS2F-D421-G0-A         E2E-XCD1-M1G           E         XS2F-D421-G0-A         E2E-XCD1-M1G           E         XS2F-D422-D0-A         E2E-XCD1-M1G           E         XS2F-D422-G00-A         E2E-XCD1-M1G      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E2E-X□Y1-M1     | 9          |                   |                |        |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | F          | XS2F-A421-D90-A   | E2E-X□Y2-M1    | 10     |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | _          |                   | E2E-X D1-M1G   |        |                 |              |     |     |     |   |                 |               |                |   |
| M12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | A          | XS2F-D421-GA0-A   | E2E-X D1-M1GJ  | - 1    |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |            |                   | E2E-X D1-M1J-T | 2      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _               | В          | XS2F-D421-GC0-A   |                | 7      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 m             | _          | X005 D404 000 4   |                | 5      |                 |              |     |     |     |   |                 |               |                |   |
| M12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | D          | XS2F-D421-G80-A   |                | 4      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | E          | XS2F-A421-GB0-A   | E2E-X□Y1-M1    | 9      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | F          | XS2F-A421-G90-A   | E2E-X□Y2-M1    | 10     |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |            |                   | E2E-X D1-M1G   |        |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 m             | A          | A XS2F-D422-DA0-A | E2E-X□D1-M1GJ  | - 1    |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |            |                   | E2E-X D1-M1J-T | 2      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | В          | XS2F-D422-DC0-A   | E2EG-XIII-M1   | 7      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |            |                   | E2E-X□D2-M1(G) | 5      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L truno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |            |                   |                | D      | XS2F-D422-D80-A | E2E-X D1S-M1 | 4   |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | Е          | XS2F-A422-DB0-A   | E2E-X□Y1-M1    | 9      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 m             | J 5 m      | 5 m               | 2 5 m          | _      |                 | E2E-X D1-M1G |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |            |                   |                | 5 m    | 5 m             | 5 m          | 5 m | 5 m | 5 m | A | XS2F-D422-GA0-A | E2E-X□D1-M1GJ | - 1            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |            |                   |                |        |                 |              |     |     |     |   |                 |               | E2E-X D1-M1J-T | 2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |            |                   |                |        |                 |              |     |     |     | В | XS2F-D422-GC0-A | E2EG-XIII-M1  | 7              |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | _          |                   | E2E-X□D2-M1(G) | 5      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | U          | X32F-D422-G80-A   | E2E-XD1S-M1    | 4      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | Е          | XS2F-A422-GB0-A   | E2E-X□Y1-M1    | 9      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |            |                   | E2E-X□D1-M3G   | 3      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Straight type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 m             |            | XS3F-M421-402-A   | E2E-X□D2-M3G   | 6      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |            |                   | E2EG-X□-M3     | 8      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1               |            |                   | E2E-X□D1-M3G   | 3      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 m             |            | XS3F-M421-405-A   | E2E-X□D2-M3G   | 6      |                 |              |     |     |     |   |                 |               |                |   |
| M8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | •          |                   | E2EG-X□-M3     | 8      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | G          |                   | E2E-X□D1-M3G   | 3      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L turno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 m             |            | XS3F-M422-402-A   | E2E-X□D2-M3G   | 6      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ∟ type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |            |                   |                | 8      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>        | -          |                   | E2E-X□D1-M3G   | 3      |                 |              |     |     |     |   |                 |               |                |   |
| M8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 m             |            | XS3F-M422-405-A   |                | 6      |                 |              |     |     |     |   |                 |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | III2       Straight type         III2       III2         III2       Straight type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |            |                   | E2EG-X□-M3     | 8      |                 |              |     |     |     |   |                 |               |                |   |

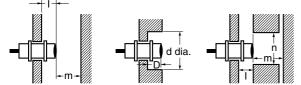
\*1. Refer to the column of the following page "connection figure No." for connection of a proximity sensor and an I/O connector.

### Connection with a sensor I/O connector

| Figure |                                         | Proximity S           | ensors          |                                                                                                |                                                                    |
|--------|-----------------------------------------|-----------------------|-----------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| No.    | Туре                                    | Operat-<br>ing status | Model           | Sensor I/O Connectors                                                                          | Connection                                                         |
| 1      | DC 2-wire<br>(IEC pin ar-<br>rangement) |                       | E2E-X□D1-M1G(J) | XS2F-D42<br>D: Cable length 2m<br>G: Cable length 5m                                           | E2E XS2F<br>U U U U U U U U U U U U U U U U U U U                  |
| 2      | DC 2-wire<br>(No polarity)              | NO                    | E2E-X□D1-M1J-T  | XS2F-D42□-□C0-A<br>G: Cable length 2m                                                          | XS2F (see note)<br>Brown (unused)<br>Blue (+) (-)<br>Black (-) (+) |
| 3      | DC 2-wire<br>(M8 connector)             |                       | E2E-X□D1-M3G    | 1: Straight type<br>2: L type<br>XS3F-M42□-40□-A<br>2: Cable length 2m _<br>5: Cable length 5m | E2E XS3F (see note)                                                |
| 4      | DC 2-wire<br>(diagnostic<br>type)       |                       | E2E-X□D1S-M1    | XS2F-D42<br>D: L type<br>XS2F-D42<br>D: Cable length 2m<br>G: Cable length 5m                  | E2E XS2F(see note)                                                 |
| 5      | DC 2-wire<br>(IEC pin ar-<br>rangement) | NC                    | E2E-X□D2-M1G    | XS2F-D42D-D80-A<br>D: Cable length 2m<br>G: Cable length 5m                                    | E2E XS2F(see note)                                                 |
| 6      | DC 2-wire<br>(M8 connector)             | No                    | E2E-X□D2-M3G    | 1: Straight type<br>2: L type<br>XS3F-D4240A<br>2: Cable length 2m-<br>5: Cable length 5m      | E2E XS3F(see note)                                                 |
| 7      | DC 3-wire                               | NO                    | E2EG-X□1-M1     | XS2F-D42<br>D: L type<br>XS2F-D42<br>D: Co-A<br>D: Cable length 2m<br>G: Cable length 5m       | E2E XS2F                                                           |
| 8      | DC 3-wire<br>(M8 connector)             |                       | E2EG-X□1-M3     | 1: Straight type<br>2: L type<br>XS3F-M42□-40□-A<br>2: Cable length 2m<br>5: Cable length 5m   | E2E XS3F                                                           |
| 9      | AC 2-wire                               | NO                    | E2E-X□Y1-M1     | XS2F-A42<br>D: Cable length 2m<br>G: Cable length 5m                                           | E2E XS2F                                                           |
| 10     | Models                                  | NC                    | E2E-X□Y2-M1     | XS2F-A421-□90-A<br>D: Cable length 2m<br>G: Cable length 5m                                    | E2E XS2F (see note)                                                |

\* Please take note that it differs from the cable color of a proximity sensor.

### **Precautions**


| <u>∧</u> Caution                                 |            |
|--------------------------------------------------|------------|
| Do not short-circuit the load, otherwise E2E may | •          |
| explode or burn.                                 | <i>M</i> A |
| Do not impose an excessive voltage on E2E,       |            |
| otherwise it may explode or burn.                |            |
| Item                                             |            |
| E2E-CR8                                          |            |
| E2E-X1                                           |            |
| E2E-C1                                           |            |

Correct Use

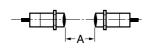
Design

#### Effects of Surrounding Metal

Provide a minimum distance between the Sensor and the surrounding metal as shown in the table below.



#### Effects of Surrounding Metal (unit: mm) (Relationship between Screw Sizes and Models)


| Туре             | Item       | M8 | M12 | M18 | M30 |    |
|------------------|------------|----|-----|-----|-----|----|
|                  |            | I  | Ó   |     |     |    |
|                  |            | d  | 8   | 12  | 18  | 30 |
|                  | Shielded   | D  |     | (   | )   |    |
|                  |            | m  | 4.5 | 8   | 20  | 40 |
| DC 2-wire        |            | n  | 12  | 18  | 27  | 45 |
| E2E-X□D□         |            | I  | 12  | 15  | 22  | 30 |
|                  |            | d  | 24  | 40  | 70  | 90 |
|                  | Unshielded | D  | 12  | 15  | 22  | 30 |
|                  |            | m  | 8   | 20  | 40  | 70 |
|                  |            | n  | 24  | 40  | 70  | 90 |
|                  |            | I  | 0   |     |     |    |
|                  |            | d  | 8   | 12  | 18  | 30 |
| DC 3-wire        | Shielded   | D  | 0   |     |     |    |
| E2E-X B /C       |            | m  | 4.5 | 8   | 20  | 40 |
| E2EG             |            | n  | 12  | 18  | 27  | 45 |
|                  |            | -  | 6   | 15  | 22  | 30 |
| AC 2-wire Models |            | d  | 24  | 40  | 55  | 90 |
| E2E-X□Y□         | Unshielded | D  | 6   | 15  | 22  | 30 |
|                  |            | m  | 8   | 20  | 40  | 70 |
|                  |            | n  | 24  | 36  | 54  | 90 |

| Туре       | Туре     |   |     | M5    | 5.4 mm<br>dia. |
|------------|----------|---|-----|-------|----------------|
|            |          | I |     | 0     |                |
| DC 3-wire  |          | d | 4   | 5     | 5.4            |
| E2E-X C/B  | Shielded | D |     | 0     |                |
| E2E-C□C/B□ |          | m | 2.4 | 2.4 3 |                |
|            |          | n | 6   | 8     | 3              |

|                   | Туре       | Model                               |
|-------------------|------------|-------------------------------------|
| 4 mm<br>dia.      |            | E2E-CR8C□<br>E2E-CR8B1              |
| M5                | Shielded   | E2E-X1C□<br>E2E-X1B1                |
| 5.4<br>mm<br>dia. |            | E2E-C1C□<br>E2E-C1B1                |
| M8                | Shielded   | E2E-X2D<br>E2EG-X1R5<br>E2E-X1R5Y   |
| IVIO              | Unshielded | E2E-X4MD<br>E2EG-X2M<br>E2E-X2MY    |
| M12               | Shielded   | E2E-X3D□<br>E2EG-X2□<br>E2E-X2Y□    |
| 10112             | Unshielded | E2E-X8MD<br>E2EG-X5M<br>E2E-X5MY    |
| M18               | Shielded   | E2E-X7D<br>E2EG-X5<br>E2E-X5Y       |
| IVI I O           | Unshielded | E2E-X14MD<br>E2EG-X10M<br>E2E-X10MY |
| M30               | Shielded   | E2E-X10D<br>E2EG-X10<br>E2E-X10Y    |
| MOO               | Unshielded | E2E-X20MD<br>E2EG-X18M<br>E2E-X18MY |

#### **Mutual Interference**

When installing two or more Sensors face to face or side by side, ensure that the minimum distances given in the right-side tables are maintained.





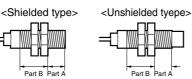
#### **Mutual Interference**

| Туре                         | Item       | M8        | M12 | M18            | M30      |          |
|------------------------------|------------|-----------|-----|----------------|----------|----------|
|                              | Shielded   | А         | 20  | 30 (20)        | 50 (30)  | 100(50)  |
| DC 2-wire                    | Shielded   | В         | 15  | 20(12)         | 35 (18)  | 70(35)   |
| E2E-X□D□                     | Unshielded | А         | 80  | 120(60)        | 200(100) | 300(100) |
|                              | Unshielded | В         | 60  | 100(50)        | 110(60)  | 200(100) |
| DC 3-wire                    | Shielded   | А         | 20  | 30 (20)        | 50 (30)  | 100(50)  |
| E2EG                         | Shielded   | В         | 15  | 20(12)         | 35 (18)  | 70(35)   |
| AC Queiro Madala             |            | А         | 80  | 120(60)        | 200(100) | 300(100) |
| AC 2-wire Models<br>E2E-X□Y□ | Unshielded | В         | 60  | 100(50)        | 110(60)  | 200(100) |
| Туре                         | Item       | 4 mm dia. | M5  | 5.4 mm<br>dia. |          |          |
| DC 3-wire                    |            | А         |     | 20             |          |          |
| E2E-XIC/BI<br>E2E-CIC/BI     | Shielded   | В         | 15  |                |          |          |

Note: Values in parentheses: Using a different frequency type model value.

#### Inrush Current

A load that has a large inrush current (e.g., a lamp or motor) will damage the Proximity Sensor, in such case connect the load to the Proximity Sensor by means of a relay.

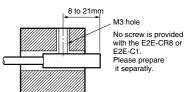

### Mounting

Mounting

Do not tighten the nut with excessive force.

A washer must be used with the nut.






Part B Part

- Note: 1 . The table below shows the tightening torques for part A and part B nuts. In the previous examples, the nut is on the sensor head side (part B) and hence the tightening torque for part B applies. If this nut is in part A, the tightening torque for part A applies instead.
  - 2. Following table bolting permission intensity shows the value at the time of using a washer.

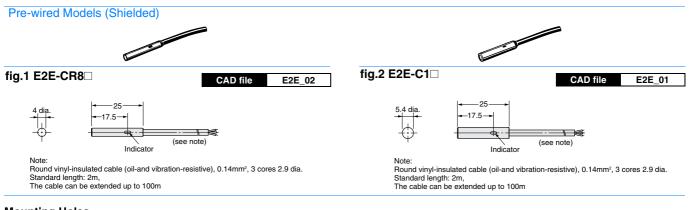
| Туре |            | Par                             | Part A |                                 |  |  |
|------|------------|---------------------------------|--------|---------------------------------|--|--|
|      |            | Length (mm) Tensile<br>(torque) |        | Tensile<br>strength<br>(torque) |  |  |
| M5   |            | 1 Nm                            |        |                                 |  |  |
| M8   | Shielded   | 9                               | 9 Nm   | 12 Nm                           |  |  |
| IVIO | Unshielded | 3                               | 3 1111 | 12 1011                         |  |  |
| M12  |            | 30 Nm                           |        |                                 |  |  |
| M18  |            | 70 Nm                           |        |                                 |  |  |
| M30  |            | 180 Nm                          |        |                                 |  |  |

How to attach a pillar-screwless type (E2 E-CR8, -C1).



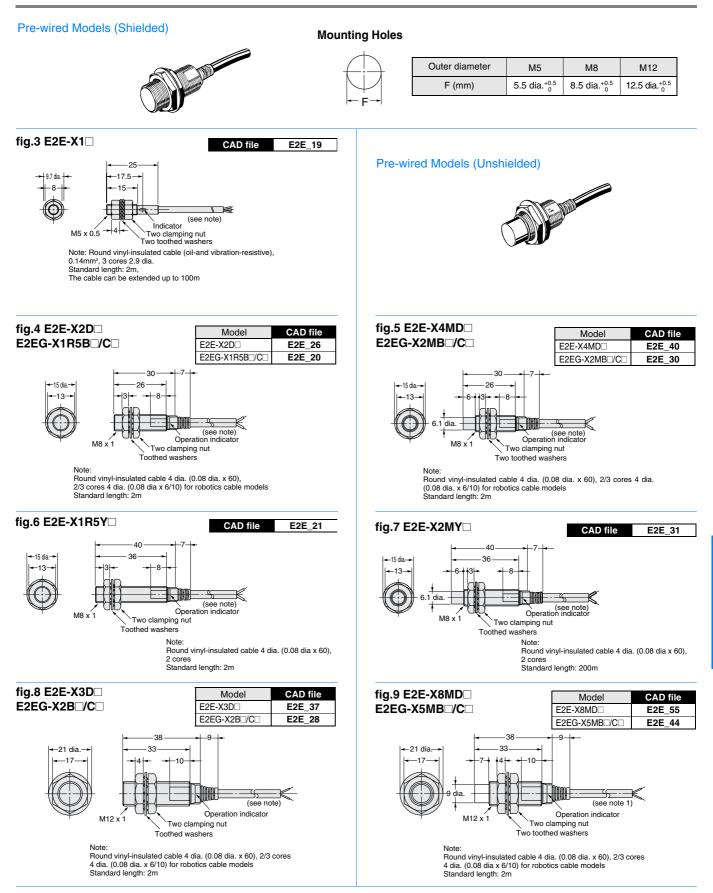
If you use a set screw, please increase the below bolting torque by 0.2 Nm.

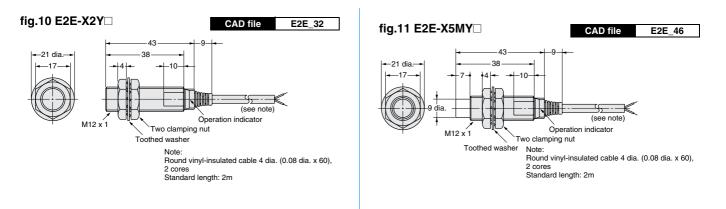
(E2E-C1: 0.4 Nm max.)


### **Dimensions (Unit: mm)**

#### Sensors

Models and dimensions chart

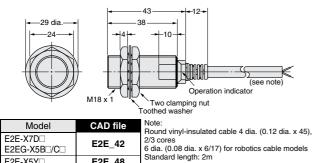

|                                                         |             | Туре           | DC 2-wire        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DC 3-wire         |                    | AC 2-wire Mode | ls                 |
|---------------------------------------------------------|-------------|----------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|----------------|--------------------|
| Model                                                   | Shielded    |                | Model            | Fig-<br>ure<br>No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Model             | Fig-<br>ure<br>No. | Model          | Fig-<br>ure<br>No. |
|                                                         |             | 4 mm<br>dia.   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E2E-CR8           | 1                  |                |                    |
|                                                         |             | M5             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E2E-X1            | 3                  |                |                    |
|                                                         | Shielded    | 5.4 mm<br>dia. |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E2E-C1            | 2                  |                |                    |
| Pre-wired Connector (M12) Connector(M8)                 | Ghicidea    | M8             | E2E-X2D          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E2EG-X1R5B□/C□    | 4                  | E2E-X1R5Y      | 6                  |
|                                                         |             | M12            | E2E-X3D          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E2EG-X2B□/C□      | 8                  | E2E-X2Y        | 10                 |
|                                                         |             | M18            | E2E-X7D          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2EG-X5B□/C□      | 13                 | E2E-X5Y        | 13                 |
|                                                         |             | M30            | E2E-X10D         | del         ure<br>No.         re<br>No.           E:         E:           4         E:           4         E:           13         E:           13         E:           13         E:           13         E:           13         E:           14         E:           9         E:           16         E:           17         E:           18         E:           16         E:           16         E:           16         E:           17         E:           18         E:           16         E:           31         E:           32         27           33         E:           34         E: | E2EG-X10BE /C     | 15                 | E2E-X10Y       | 15                 |
|                                                         |             | M8             | E2E-X4MD         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E2EG-X2MB□/C□     | 5                  | E2E-X2MY       | 7                  |
|                                                         | Linebielded | M12            | E2E-X8MD         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E2EG-X5MB□/C□     | 9                  | E2E-X5MY       | 11                 |
|                                                         | Unshielded  | M18            | E2E-X14MD        | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2EG-X10MB□/C□    | 14                 | E2E-X10MY      | 14                 |
|                                                         |             | M30            | E2E-X20MD        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2EG-X18MB□/C□    | 16                 | E2E-X18MY      | 16                 |
|                                                         |             | M8             | E2E-X2D□-M1(G)   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2EG-X1R5B□/C□-M1 | 17                 |                | l                  |
|                                                         | Objected    | M12            | E2E-X3D□-M1(G)   | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2EG-X2B□/C□-M1   | 19                 | E2E-X2Y□-M1    | 21                 |
|                                                         | Shielded    | M18            | E2E-X7D□-M1(G)   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2EG-X5B□/C□-M1   | 23                 | E2E-X5YD-M1    | 23                 |
| Connector (M12)                                         |             | M30            | E2E-X10D□-M1(G)  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2EG-X10B□/C□-M1  | 25                 | E2E-X10Y□-M1   | 25                 |
| Connector (M12)                                         |             | M8             | E2E-X4MD□-M1(G)  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2EG-X2MB□/C□-M1  | 18                 |                |                    |
|                                                         | Linebielded | M12            | E2E-X8MD□-M1(G)  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2EG-X5MB□/C□-M1  | 20                 | E2E-X5MY□-M1   | 22                 |
|                                                         | Unshielded  | M18            | E2E-X14MD□-M1(G) | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2EG-X10MB□/C□-M1 | 24                 | E2E-X10MY -M1  | 24                 |
|                                                         |             | M30            | E2E-X20MD□-M1(G) | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2EG-X18MB□/C□-M1 | 26                 | E2E-X18MY□-M1  | 26                 |
| O (140)                                                 | Shielded    |                | E2E-X2DD-M3G     | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2EG-X1R5BD/CD-M3 | 27                 |                | l                  |
| Connector(IVI8)                                         | Unshielded  | M8             | E2E-X4MD□-M3G    | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2EG-X2MB□/C□-M3  | 28                 |                |                    |
|                                                         |             | M12            | E2E-X3D1-M1GJ    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |                |                    |
|                                                         | Shielded    | M18            | E2E-X7D1-M1GJ    | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |                |                    |
| Connector ovtension                                     |             | M30            | E2E-X10D1-M1GJ   | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |                |                    |
| Connector extension                                     |             | M12            | E2E-X8MD1-M1GJ   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |                |                    |
|                                                         | Unshielded  | M18            | E2E-X14MD1-M1GJ  | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |                |                    |
|                                                         |             | M30            | E2E-X20MD1-M1GJ  | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                 |                    |                |                    |
|                                                         |             | M12            | E2E-X3D1-M1J-T   | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |                |                    |
| Connector extension<br>(no polarity)                    | ^           | M18            | E2E-X7D1-M1J-T   | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                 |                    |                |                    |
| Connector (M12)<br>Connector(M8)<br>Connector extension |             | M30            | E2E-X10D1-M1J-T  | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                 |                    |                |                    |


Note: 1 . Two clamping nuts and one toothed washer are attached to M8 to M30 type. 2 . The pre-wired models of M8 to M30 mark model number to a cable and a milling cutter by laser.



#### **Mounting Holes**

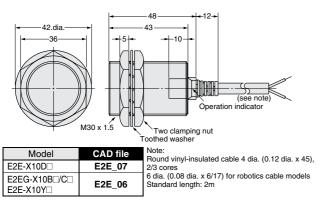
| $\uparrow$ | Outer diameter | 4 mm dia.              | 5.4 mm dia.            |
|------------|----------------|------------------------|------------------------|
| it         | F (mm)         | 4.2 dia. $^{+0.5}_{0}$ | 5.7 dia. $^{+0.5}_{0}$ |
| $\vdash$   |                |                        |                        |






Pre-wired Models (Shielded)

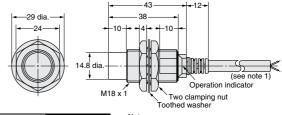



#### fig.13 E2E-X7D /E2EG-X5B /C E2E-X5Y



#### fig.15 E2E-X10D / E2EG-X10B / C E2E-X10Y

E2E-X5Y

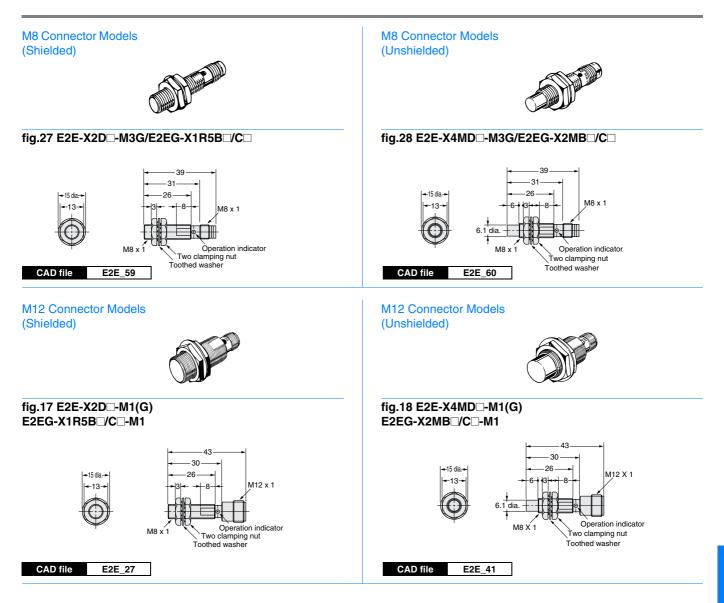

E2E\_48



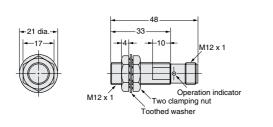
#### Pre-wired Models (Unshielded)



#### fig.14 E2E-X14MD /E2EG-X10MB /C E2E-X10MY

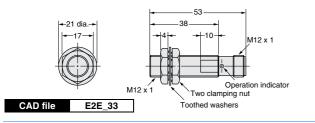



| Model                        | CAD file |
|------------------------------|----------|
| E2E-X14MD                    | E2E_16   |
| E2EG-X10MB□/C□<br>E2E-X10MY□ | E2E_10   |

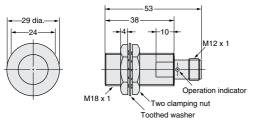

Note: Round vinyl-insulated cable 6 dia. (0.12 dia. x 2/3 cores 6 dia. (0.08 dia. x 6/17) robotics cable models Standard length: 2m

#### fig.16 E2E-X20MD /E2EG-X18MB /C E2E-X18MY



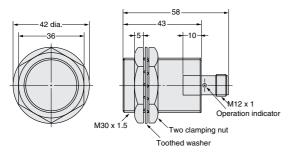



#### fig.19 E2E-X3D□-M1G E2EG-X2B□/C□




#### CAD file E2E\_34

fig.21 E2E-X2Y□-M1



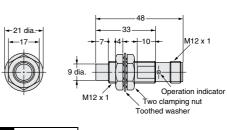

#### fig.23 E2E-X7D--M1G/E2EG-X5B-/C-E2E-X5Y--M1



CAD file E2E\_49

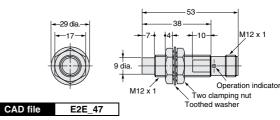
#### fig.25 E2E-X10D□-M1(G)/E2EG-X10B□/C□ E2E-X10Y□-M1



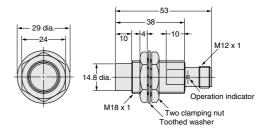

#### CAD file E2E\_04

Mounting Holes

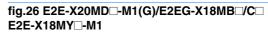
| $\left( \right)$ | $\square$ |
|------------------|-----------|
| $\overline{\}$   | $\square$ |
| - I              | =         |

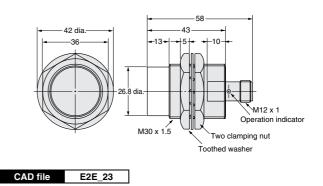

## Outer diameter M5 M8 M12 M18 M30 F (mm) 5.5 dia.<sup>+0.5</sup><sub>0</sub> 8.5 dia.<sup>+0.5</sup><sub>0</sub> 12.5 dia<sup>+0.5</sup><sub>0</sub> 18.5 dia.<sup>+0.5</sup><sub>0</sub> 30.5 dia.<sup>+0.5</sup>

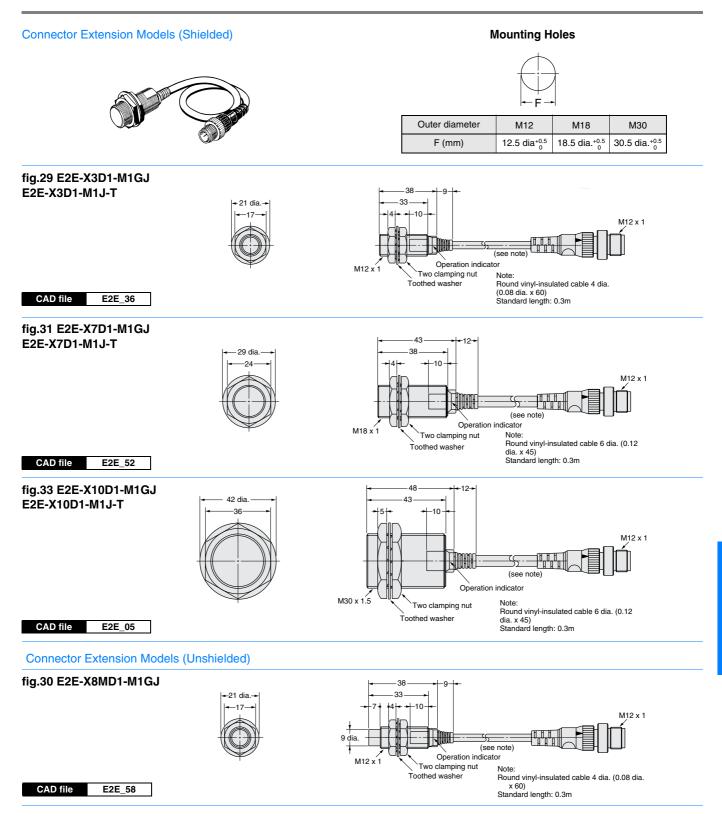
#### fig.20 E2E-X8MD --- M1G E2EG-X5MB --- C

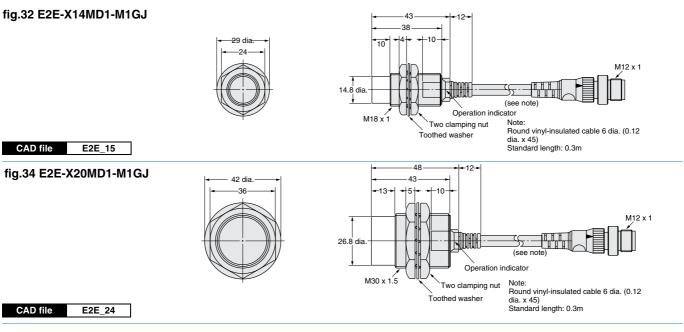



### CAD file E2E\_57


#### fig.22 E2E-X5MY□-M1





#### fig.24 E2E-X14MD□-M1(G)/E2EG-X10MB□/C□ E2E-X10MY□-M1




#### CAD file E2E\_14

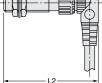


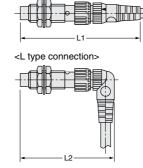






Dimensions of connection with proximity sensor and sensor I/O connector


<Straight type connection>


Unshielded

#### Shielded

<Straight type connection>

<L type connection>





#### Dimensions of connection with XS2F

|   | Size    | Length    | L1        | L2        |
|---|---------|-----------|-----------|-----------|
| - | M8      |           | Approx.75 | Approx.62 |
|   | M12*    | DC Models | Approx.80 | Approx.67 |
|   | IVI I Z | AC Models | Approx.85 | Approx.72 |
|   | M18     |           | Approx.85 | Approx.72 |
|   | M30     |           | Approx.90 | Approx.77 |

Dimensions of connection with XS3F

| Size | Length | L1        | L2        |
|------|--------|-----------|-----------|
| M8   |        | Approx.65 | Approx.54 |

Only in the diameter M12 of a sensor, dimensions (sensor full length) differ for AC or DC. Therefore, please consider that a connection with I/O connector changes dimensions.

Accessories (Order Separately)

Sensor I/O Connectors E-20

### MEMO

|                   |                  |           |           |                           |                  |                                       | <br>                 | <br> |                  |                  |                                          |                                          |                  |             |                                       |
|-------------------|------------------|-----------|-----------|---------------------------|------------------|---------------------------------------|----------------------|------|------------------|------------------|------------------------------------------|------------------------------------------|------------------|-------------|---------------------------------------|
|                   | <br> <br>        |           |           | <br>                      |                  |                                       |                      |      |                  | <br>             |                                          |                                          |                  |             |                                       |
| ,<br>,<br>,<br>,  | ,<br>,<br>,<br>, |           |           | <br> <br> <br>            | <br> <br> <br>   |                                       | <br> <br> <br>       | <br> | ,<br>,           | <br> <br> <br>   | <br> <br>                                |                                          | <br> <br>        | <br>        |                                       |
|                   |                  |           |           | 1<br>1<br>1<br>           | <br> -<br>       |                                       | <br> <br>            | <br> |                  | <br>             |                                          |                                          | <br>             | <br>        | <del>-</del>                          |
| ,<br>,<br>,<br>,  | ,<br>,<br>,<br>, | <br> <br> |           | '<br> <br> <br>L          | ,<br>,<br>,<br>, | , , , , , , , , , , , , , , , , , , , | <br>,<br>,<br>,<br>, | <br> | ,<br>,<br>,<br>, | ,<br>,<br>,<br>, | ,<br>,<br>,<br>,                         | ,<br>,<br>,<br>,                         | ,<br>,<br>,<br>, | '<br> <br>  | , , , , , , , , , , , , , , , , , , , |
| 1<br>1<br>1       | 1<br>1<br>1      |           |           |                           | 1<br>1<br>1<br>1 |                                       |                      |      |                  |                  |                                          |                                          |                  |             |                                       |
| •<br>•<br>•       | H<br>I<br>I      |           | <br> <br> | +<br> <br>                | I<br>I<br>I      | 4<br>                                 | <br>⊨ – – – –<br>I   | <br> | +<br> <br>       | <br> <br>        | <br> <br>                                | <br> <br>                                | ⊨<br>I           | <br> <br>   |                                       |
| ,<br>,<br>,<br>,  | ,<br>,<br>,      | <br>      | <br>      | ,<br>,<br>, – – – – –     | ,<br>,<br>,<br>, | י<br>י<br>ו ד<br>י                    | <br>,<br>,<br>,      | <br> | ,<br>,<br>,      | ,<br>,           | ,<br>,                                   | <br>                                     | ,<br>,<br>,      | <br>        | , , , , , , , , , , , , , , , , , , , |
|                   |                  |           |           |                           | 1<br>1<br>1      |                                       |                      | <br> |                  |                  | <br> <br>                                |                                          |                  | <br> <br>   |                                       |
| -<br> -<br> -<br> | <br> <br>        |           |           | <br> <br>                 | <br> <br>        |                                       |                      |      |                  | <br>             |                                          |                                          |                  |             |                                       |
| 1<br>1<br>1<br>1  |                  |           |           | L<br> <br>                | '<br>I<br>I      | ' <u></u><br>                         | <br>L                | <br> |                  | L<br> <br>       | '<br>'                                   |                                          | L                | '<br> <br>  | '1<br>       <br>                     |
| <br>              | <br> <br> <br>   |           | <br> <br> | <br>                      | <br> <br> <br>   |                                       | <br> <br> <br>       | <br> | <br> <br>        | <br> <br> <br>   | <br>                                     | <br> <br>                                | <br> <br>        | <br> <br>   |                                       |
| i<br>r            | <br> -<br>       |           | <br> <br> | <br> <br>                 | <br> <br>        | <br>                                  | <br> <br> <br>       | <br> | <br> <br>        | <br> -<br>       | <br>                                     | <br>                                     | <br> <br>        | <br>        | <br>  = = = = 1<br>                   |
| <br> <br>         | <br> <br>        |           |           | <br> <br>                 | <br>             |                                       |                      | <br> |                  | <br> <br>        | ,<br>,<br>,                              |                                          | <br> <br>        |             |                                       |
| 1<br>1<br>1<br>1  | 1<br>1<br>1<br>1 |           |           | <br> <br>                 | 1<br>1<br>1<br>1 |                                       |                      |      |                  | <br> <br>        |                                          |                                          |                  |             |                                       |
| U<br>I<br>I<br>I  | L<br> <br> <br>  | J         | <br> <br> | L<br> <br>                | !<br>!<br>!      | <br>                                  | <br>L<br> <br>       | <br> | L                | L<br> <br>       | <br> <br>                                | <br> <br>                                | L                | !<br>!<br>! | J<br>                                 |
| <br>              | <br> <br>        | <br> 4    | <br>      | <br>                      | <br> <br>        | <br> +<br>                            | <br> <br>            | <br> | <br>             | <br> <br>        | <br>                                     | <br> <br>                                | <br>             | <br>        | <br>  4<br>                           |
| ,<br>,<br>,<br>,  | <br>             | <br>      | <br> <br> | <br> <br> <br>  = = = = = | <br>             | <br>                                  | <br>,<br>,<br>,      | <br> | ,<br>,<br>,      |                  | <br>                                     | <br>                                     | ,<br>,<br>,      | <br>        |                                       |
| 1<br>1<br>1<br>1  | 1<br>1<br>1<br>1 |           |           | <br> <br>                 | 1<br>1<br>1<br>1 |                                       |                      |      |                  | <br> <br>        |                                          |                                          |                  |             |                                       |
| 1<br>1<br>1       | 1<br>1<br>1      |           |           |                           | 1<br>1<br>1      |                                       |                      |      |                  |                  |                                          |                                          |                  |             |                                       |
|                   |                  |           |           |                           |                  |                                       | <br>L                | <br> | L                | L                |                                          |                                          | L                |             |                                       |
| ,<br> <br>        | н – – – –<br>I   |           |           | +<br>I                    | 1<br>1           |                                       | <br><br>'            | <br> |                  | н – – – –<br>I   | <br>                                     |                                          | ⊢ – – – –<br>I   | <br>        | <br> 4<br>                            |
|                   |                  |           |           | і<br>г                    | <br>             | <br>       <br>                       | <br>                 | <br> | r                |                  |                                          |                                          |                  |             | <br>       <br>                       |
| 1                 | i<br>I           |           |           | r<br>F                    | i<br>I           |                                       |                      |      |                  | r<br>F           |                                          |                                          |                  |             | і і<br>І І                            |
| 1                 | 1                |           |           | 1                         | 1                |                                       |                      |      |                  | 1                |                                          |                                          |                  |             |                                       |
| 1                 |                  |           |           | L                         |                  | <br> <br> <br> <br>                   | <br>                 | <br> |                  |                  |                                          |                                          |                  |             |                                       |
| <br>              | <br> <br>        | <br>      | <br>      | <br>                      | <br> <br>        | <br> +<br>                            | <br> <br>            | <br> | <br>             | <br> <br>        | <br>                                     | <br>                                     | <br>             | <br>        | <br> 4                                |
| 1<br>1<br>1       |                  |           |           |                           | 1<br>1<br>1      |                                       |                      |      |                  |                  |                                          |                                          |                  |             |                                       |
| 1                 | 1                |           |           | l<br>L                    | 1                |                                       |                      |      |                  | l<br>L           |                                          |                                          |                  |             | I I                                   |
|                   | 1<br>1<br>1      |           |           | <u> </u><br> <br> <br>    | <br> <br>        |                                       | <br> <br> <br> <br>  | <br> |                  | <br> <br>        |                                          |                                          | L<br><br>I<br>I  |             |                                       |
|                   |                  |           |           |                           | ·                |                                       | <br>                 | <br> |                  |                  |                                          |                                          |                  |             |                                       |
|                   | i<br>i<br>       |           |           | <br> <br><del>-</del>     | i<br>i<br>'      |                                       | <br>                 | <br> |                  | I<br>I<br>I      | н. — — — — — — — — — — — — — — — — — — — | н. — — — — — — — — — — — — — — — — — — — |                  |             | <br>  4                               |

### Spatter immune Proximity Sensors

E2EQ

### A Series of Spatter-resistant Proximity Sensors with a Teflon-coated Metal Housing • Long sensing-distance type included in series.



\* Teflon is a registered trademark of Dupont Company and Mitsui Dupont Chemical Company for their fluoride resin.

### **Ordering Information**

#### Sensors

#### Pre-wired Models

Long-distance type

| Sha      | ape | Sensing distance | Output<br>specifications | Operating<br>status | Model      |
|----------|-----|------------------|--------------------------|---------------------|------------|
| Chielded | M12 | 4mm              |                          |                     | E2EQ-X4X1  |
| Shielded | M18 | 8mm              | DC 2-wire                | NO                  | E2EQ-X8X1  |
| - ki     | M30 | 15mm             |                          |                     | E2EQ-X15X1 |

#### Standard

| Sha      | ape | Sensing distance | Output<br>specifications | Operating<br>status | Model      |
|----------|-----|------------------|--------------------------|---------------------|------------|
|          | M12 | 3mm              |                          |                     | E2EQ-X3D1  |
| Shielded | M18 | <b>7</b> mm      | DC 2-wire                | NO                  | E2EQ-X7D1  |
|          | M30 | 10mm             |                          |                     | E2EQ-X10D1 |

#### Plug-in Models

Long-distance type

| Sha          | ape | Sensing d | istance | Output<br>specifications | Operating<br>status | Model          |
|--------------|-----|-----------|---------|--------------------------|---------------------|----------------|
| Objected and | M12 | 4mm       |         | DC 2-wire models         |                     | E2EQ-X4X1-M1J  |
| Shielded     | M18 | 8mm       |         | (3) and (4) Pin          | NO                  | E2EQ-X8X1-M1J  |
|              | M30 | 15m       | n       | arrangement              |                     | E2EQ-X15X1-M1J |

#### Standard

| Stan      | Standard Sensing distance |      | Output<br>specifications | Operating<br>status | Model           |
|-----------|---------------------------|------|--------------------------|---------------------|-----------------|
| Objetetet | M12                       | 3mm  | DC 2-wire models         |                     | E2EQ-X3D1-M1GJ  |
| Shielded  | M18                       | 7mm  | (1) and (4) Pin ar-      | NO                  | E2EQ-X7D1-M1GJ  |
| M         | M30                       | 10mm | rangement                |                     | E2EQ-X10D1-M1GJ |

#### Accessories (Order Separately) Sensor I/O Connectors

| Shape         | Cable length | Sensor I/O Connectors | Applicable proximity sensor models |
|---------------|--------------|-----------------------|------------------------------------|
| Straight type | 2 m          | XS2F-D421-DCO-A       |                                    |
| <b>Andrew</b> | 5 m          | XS2F-D421-GCO-A       | E2EQ-X□X1-M1J                      |
| L type        | 2 m          | XS2F-D422-DCO-A       |                                    |
|               | 5 m          | XS2F-D422-GCO-A       |                                    |
| Straight type | 2 m          | XS2F-D421-DA0-A       |                                    |
|               | 5 m          | XS2F-D421-GA0-A       | E2EQ-X□D1-M1GJ                     |
| L type        | 2 m          | XS2F-D422-DA0-A       |                                    |
|               | 5 m          | XS2F-D422-GA0-A       |                                    |

### **Rating/Performance**

#### Long-distance type

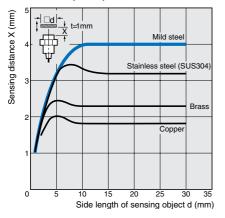
| Item<br>Sensing distar<br>Setting distand<br>Differential dis | ce*1                                                            | E2EQ-X4X1<br>E2EQ-X4X1-M1J<br>4 mm ±10%<br>0 to 3.2 mm                                                               | E2EQ-X8X1<br>E2EQ-X8X1-M1J<br>8 mm ±10%                            | E2EQ-X15X1<br>E2EQ-X15X1-M1J<br>15 mm ±10%                                            |  |  |
|---------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| Sensing distar<br>Setting distand<br>Differential dis         | ce*1                                                            | 4 mm ±10%                                                                                                            | 8 mm ±10%                                                          |                                                                                       |  |  |
| Setting distand<br>Differential dis                           | ce*1                                                            |                                                                                                                      |                                                                    | 15 mm ±10%                                                                            |  |  |
| Differential dis                                              |                                                                 | 0 to 3.2 mm                                                                                                          |                                                                    |                                                                                       |  |  |
|                                                               | stance                                                          |                                                                                                                      | 0 to 6.4 mm                                                        | 0 to 12 mm                                                                            |  |  |
| 0                                                             |                                                                 | 15% max. of sensing distance                                                                                         |                                                                    |                                                                                       |  |  |
| (mild steel)                                                  | sing object                                                     | 12 x 12 x 1 mm                                                                                                       | 18 ± 18 ± 1 mm                                                     | 30 ± 30 ± 1 mm                                                                        |  |  |
| Response free                                                 | quency*2                                                        | 1 kHz                                                                                                                | 0.5 kHz                                                            | 0.25 kHz                                                                              |  |  |
|                                                               | Switching<br>capacity                                           | 3 to 100 mA                                                                                                          |                                                                    |                                                                                       |  |  |
| -                                                             | Residual<br>voltage*3                                           | 5.0 V max. (under load current of                                                                                    | 5.0 V max. (under load current of 100 mA with cable length of 2 m) |                                                                                       |  |  |
|                                                               | erating status (with<br>nsing object approaching) C1 models: NO |                                                                                                                      |                                                                    |                                                                                       |  |  |
| Protective circ                                               | cuits                                                           | Surge absorber, load short-circuit                                                                                   | protection                                                         |                                                                                       |  |  |
| Ambient temp                                                  | erature                                                         | Operating: -25°C to 70°C, Storag                                                                                     | e: -40°C to 85°C (with no icing or c                               | ondensation)                                                                          |  |  |
| Temperature i                                                 | nfluence                                                        | $\pm 15\%$ max. of sensing distance a<br>of -40°C to 85°C $\pm 10\%$ max. of set<br>temperature range of -25°C to70° | ensing distance at 23°C within                                     | ±15% max. of sensing distance<br>at 23°C within temperature range<br>of -25°C to 70°C |  |  |
| Voltage influer                                               | nce                                                             | ±1% max. of Sensing distance in                                                                                      | rated voltage range $\pm 15\%$ .                                   | <u>.</u>                                                                              |  |  |
| Shock resistar                                                | nce                                                             | Destruction: 1,000 m/s <sup>2</sup> for 10 tim                                                                       | es each in X, Y, and Z directions                                  |                                                                                       |  |  |
| Connection m                                                  | ethod                                                           | Pre-wired (standard length: 2 m)                                                                                     | Connector Extension Models                                         |                                                                                       |  |  |
| Weight                                                        | Pre-wired                                                       | 65 g                                                                                                                 | Approx. 140 g                                                      | Approx. 190 g                                                                         |  |  |
|                                                               | Junction<br>connector                                           | Approx. 20 g                                                                                                         | Approx. 40g                                                        | Approx. 90 g                                                                          |  |  |

\*1. Use within a range where the green indicator is lit.
\*2. The response frequencies for DC switching are average values.
\*3. Since residual voltage is 5 V, use it after checking interface requirements with the connection devices.

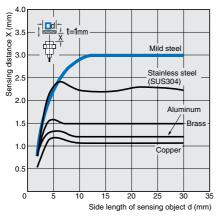
#### Standard

|                                                    | Model                 | E2EQ-X3D1                                                                                                                   | E2EQ-X7D1      | E2EQ-X10D1      |  |
|----------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|--|
| Item                                               |                       | E2EQ-X3D1-M1GJ                                                                                                              | E2EQ-X7D1-M1GJ | E2EQ-X10D1-M1GJ |  |
| Sensing distance                                   |                       | 3 mm ±10%                                                                                                                   | 7 mm ±10%      | 10 mm ±10%      |  |
| Setting distance                                   |                       | 0 to 2.4 mm                                                                                                                 | 0 to 5.6 mm    | 0 to 8 mm       |  |
| Differential distance                              |                       | 10% max.                                                                                                                    |                |                 |  |
| Standard sensing object (mild steel)               |                       | 12 x 12 x 1 mm                                                                                                              | 18 x 18 x 1 mm | 30 x 30 x 1 mm  |  |
| Response frequency                                 |                       | 1 kHz                                                                                                                       | 500 Hz         | 400 Hz          |  |
| Control out-<br>put                                | Switching capacity    | 3 to 100 mA                                                                                                                 |                |                 |  |
|                                                    | Residual voltage      | 3.0 V max. (under load current of 100 mA with cable length of 2 m)                                                          |                |                 |  |
| Operating status (with sensing object approaching) |                       | NO                                                                                                                          |                |                 |  |
| Protective circuits                                |                       | Surge absorber, short-circuit protection                                                                                    |                |                 |  |
| Ambient temperature                                |                       | Operating/Storage: -25°C to 70°C (with no icing or condensation)                                                            |                |                 |  |
| Temperature influence                              |                       | ±10% max. of sensing distance at 23°C within temperature range of -25°C and 70°C                                            |                |                 |  |
| Voltage influence                                  |                       | ±2.5% max. of Sensing distance within rated voltage range ±15%.                                                             |                |                 |  |
| Shock resistance                                   |                       | Destruction: 1,000 m/s <sup>2</sup> for 10 times each in X, Y, and Z directions                                             |                |                 |  |
| Connection method                                  |                       | E2EQ-X D1: Pre-wired models (Standard length: 2 m)<br>E2EQ-X D1-M1GJ type: Connector relay models (Standard length: 300 mm) |                |                 |  |
| Weight<br>(Packed<br>state)                        | Pre-wired             | Approx. 120 g                                                                                                               | Approx. 160 g  | Approx. 220 g   |  |
|                                                    | Junction<br>connector | Approx. 80 g                                                                                                                | Approx. 110 g  | Approx. 190 g   |  |

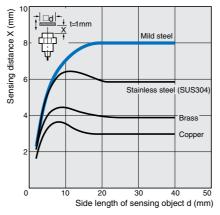
\* The response frequencies for DC switching are average values measured on condition that the distance between each sensing object is twice as large as the size of the sensing object and the sensing distance set is half of the maximum sensing distance.


#### General

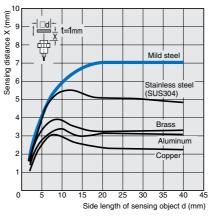
| Model                                         |                 | E2EQ-X4X1                                                                       | E2EQ-X8X1      | E2EQ-X15X1      |  |
|-----------------------------------------------|-----------------|---------------------------------------------------------------------------------|----------------|-----------------|--|
| Moder                                         |                 | E2EQ-X4X1-M1J                                                                   | E2EQ-X8X1-M1J  | E2EQ-X15X1-M1J  |  |
|                                               |                 | E2EQ-X3D1                                                                       | E2EQ-X7D1      | E2EQ-X10D1      |  |
| Item                                          |                 | E2EQ-X3D1-M1GJ                                                                  | E2EQ-X7D1-M1GJ | E2EQ-X10D1-M1GJ |  |
| Sensing object                                |                 | Ferrous metal (Sensitivity lowers with non-ferrous metals)                      |                |                 |  |
| Rated supply voltage (operat-<br>ing voltage) |                 | 12 to 24 VDC (10 to 30 VDC), ripple (p-p): 10% max.                             |                |                 |  |
| Leakage current                               |                 | 0.8 mA max.                                                                     |                |                 |  |
| Indicator lamp                                |                 | Operation indicator (red), operation setting indicator (green)                  |                |                 |  |
| Ambient humidity                              |                 | Operating/Storage: 35% to 95%RH (with no condensation)                          |                |                 |  |
| Insulation resistance                         |                 | 50 M $\Omega$ min. (at 500 VDC) between energized parts and case                |                |                 |  |
| Dielectric strength                           |                 | 1,000 VAC for 1 min between energized parts and case                            |                |                 |  |
| Vibration resistance                          |                 | 10 to 55 Hz, 1.5 mm double amplitude for 2 hours each in X, Y, and Z directions |                |                 |  |
| Protective structure                          |                 | IEC60529 IP67                                                                   |                |                 |  |
| Material                                      | Case            | Teflon resin coating (base: brass) *                                            |                |                 |  |
|                                               | Sensing surface | Teflon resin *                                                                  |                |                 |  |
| Accessories                                   |                 | Instruction manual                                                              |                |                 |  |


\* Teflon is a registered trademark of Dupont Company and Mitsui Dupont Chemical Company for their fluoride resin.

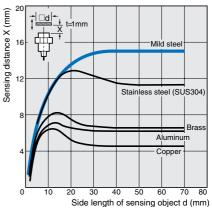
### Characteristic data (typical)


#### Sensing Distance vs. Sensing Object E2EQ-X4X1(-M1J)

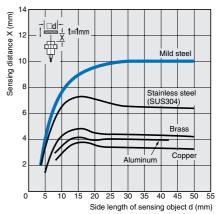



#### E2EQ-X3D1(-M1GJ)




#### E2EQ-X8X1(-M1J)




#### E2EQ-X7D1(-M1GJ)



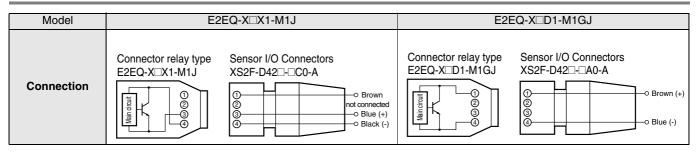
#### E2EQ-X15X1(-M1J)



#### E2EQ-X10D1(-M1GJ)



### **Output Circuit Diagram**


#### Long-distance type

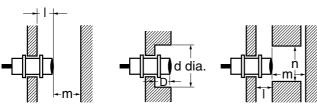
| Model                                                                                    | Ope-<br>rating<br>status | Timing chart                                                                                                                                                                                                                                                                                                                             | Output circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E2EQ-X4X1<br>E2EQ-X8X1<br>E2EQ-X15X1<br>E2EQ-X4X1-M1J<br>E2EQ-X8X1-M1J<br>E2EQ-X15X1-M1J | NO                       | Sensing<br>0%<br>100 80(TYP)<br>0%<br>100 80(TYP)<br>0<br>100 80(TYP)<br>0<br>100 80(TYP)<br>0<br>100 80(TYP)<br>0<br>100 80(TYP)<br>0<br>100 80(TYP)<br>0<br>101 Green<br>Not lit<br>101 Green<br>Not lit<br>101 Green<br>Not lit<br>101 Green<br>Not lit<br>101 Green<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Note:<br>Wiring<br>Wiring<br>Main the book of the second to either the +V or the 0-V line.<br>Wiring<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>Output<br>O |

#### Standard

| Model                                                                                       | Ope-<br>rating<br>status | Timing chart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Output circuit                                                                                                                                                            |
|---------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E2EQ-X3D1<br>E2EQ-X7D1<br>E2EQ-X10D1<br>E2EQ-X3D1-M1GJ<br>E2EQ-X7D1-M1GJ<br>E2EQ-X10D1-M1GJ | NO                       | Setting point         Non-sensing zone       Stable sensing zone         Sensing       Stable sensing zone         Sensing       Image: Stable sensing zone         Rated       Sensing         distance       Image: Stable sensing zone         Image: Sensing distance       Image: Stable sensing zone         Image: Sensing distance       Image: Stable sensing zone         Image: Sensing distance       Image: Stable sensing zone         Image: Sensing distance       Image: Stable sensing zone         Image: Sensing distance       Image: Stable sensing zone         Image: Sensing distance       Image: Stable sensing zone         Image: Sensing distance       Image: Stable sensing zone         Image: Sensing distance       Image: Stable sensing zone         Image: Sensing distance       Image: Stable sensing zone         Image: Sensing distance       Image: Stable sensing zone         Image: Sensing distance       Image: Stable sensing zone <th>Note:<br/>Wiring<br/>(2)<br/>Note:<br/>The Load can be connected to either the<br/>+V or the 0-V line.<br/>Wiring<br/>(2)<br/>(3)<br/>Note:<br/>Terminals (2) and (3) are not used.</th> | Note:<br>Wiring<br>(2)<br>Note:<br>The Load can be connected to either the<br>+V or the 0-V line.<br>Wiring<br>(2)<br>(3)<br>Note:<br>Terminals (2) and (3) are not used. |

### **Connecting Plug-in models**



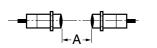

## **Precautions**

#### Correct Use

#### Design

## Effects of Surrounding Metal

Provide a minimum distance between the Sensor and the surrounding metal as shown in the table below.



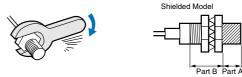

Effects of Surrounding Metal (Unit: mm)

| Model Item        | -   | d  | D   | m  | n  |
|-------------------|-----|----|-----|----|----|
| E2EQ-X4X1(-M1J)   | 2.4 | 18 | 2.4 | 12 | 18 |
| E2EQ-X8X1(-M1J)   | 3.6 | 27 | 3.6 | 24 | 27 |
| E2EQ-X15X1(-M1J)  | 6   | 45 | 6   | 45 | 45 |
| E2EQ-X3D11(-M1GJ) |     | 12 |     | 8  | 18 |
| E2EQ-X7D1(-M1GJ)  | 0   | 18 | 0   | 20 | 27 |
| E2EQ-X10D1(-M1GJ) |     | 30 |     | 40 | 45 |

#### **Mutual Interference**

If more than one Proximity Sensor is installed face to face or in parallel, make sure that the distances between two Units adjacent to each other are the same as or larger than the corresponding values shown in the following table.





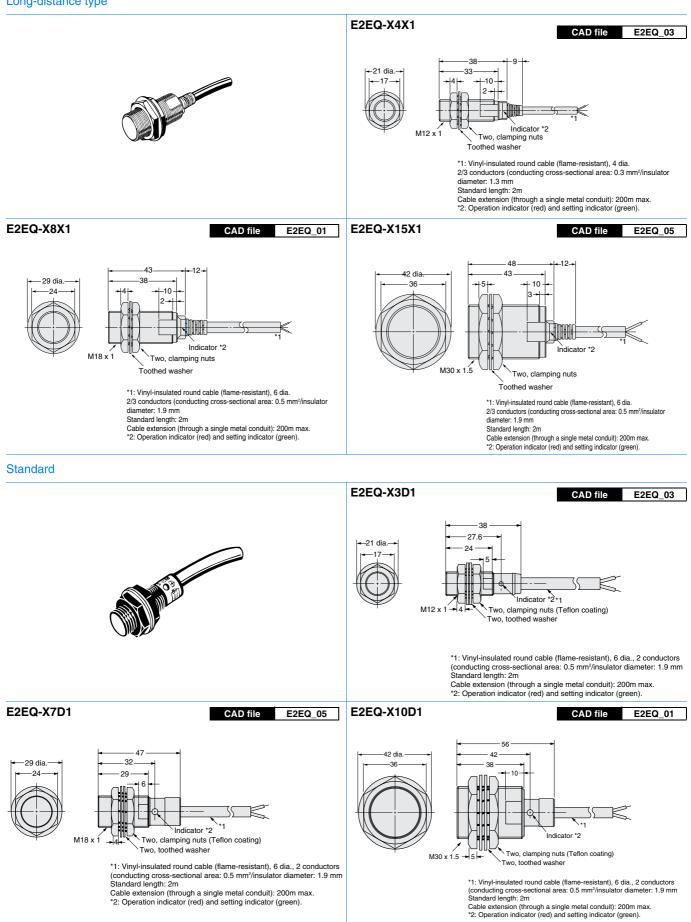

Mutual Interference(Unit: mm)

| Model Item        | А   | В  |
|-------------------|-----|----|
| E2EQ-X4X1(-M1J)   | 30  | 20 |
| E2EQ-X8X1(-M1J)   | 60  | 35 |
| E2EQ-X15X1(-M1J)  | 110 | 90 |
| E2EQ-X3D1(-M1GJ)  | 30  | 20 |
| E2EQ-X7D1(-M1GJ)  | 50  | 35 |
| E2EQ-X10D1(-M1GJ) | 100 | 70 |

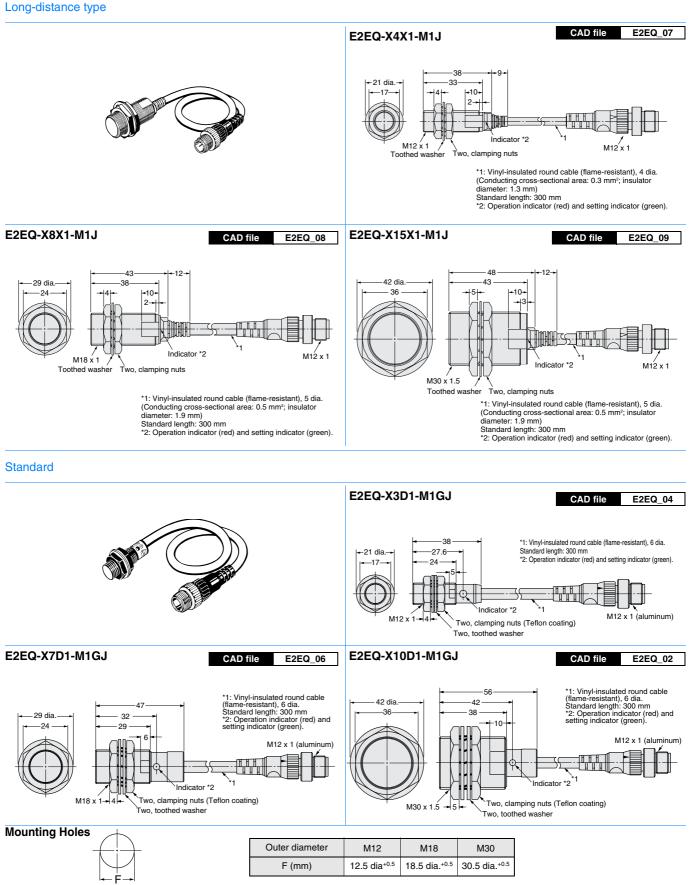
#### Mounting

Do not tighten the nut with excessive force. A washer must be used with the nut.




- Note: 1 . The table below shows the tightening torques for part A and part B nuts. In the previous examples, the nut is on the sensor head side (part B) and hence the tightening torque for part B applies. If this nut is in part A, the tightening torque for part A applies instead.2 . The table below shows the value of tightening torques when using
  - toothed washers.

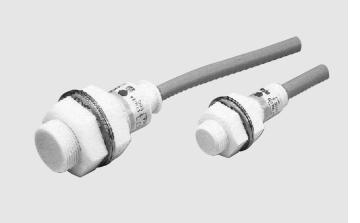
| Torque            |                | Part A | Part B |  |
|-------------------|----------------|--------|--------|--|
| Model             | Length<br>(mm) | Torque | Torque |  |
| E2EQ-X4X1(-M1J)   |                | 30     | Nm     |  |
| E2EQ-X8X1(-M1J)   |                | 70     | Nm     |  |
| E2EQ-X15A(-M1J)   |                | 180 Nm |        |  |
| E2EQ-X3D1(-M1GJ)  | 24             | 15 Nm  |        |  |
| E2EQ-X7D1(-M1GJ)  | 29             |        |        |  |
| E2EQ-X10D1(-M1GJ) | 26             | 39 Nm  | 78 Nm  |  |


## **Dimensions (Unit: mm)**

#### Pre-wired Models

Long-distance type



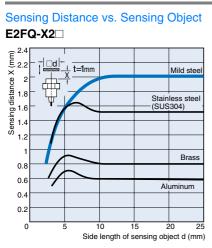





Inductive Proximity Sensor



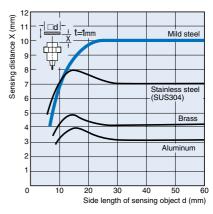
# Spatter-Resistant Sensor for Welding Application




\* Teflon is a registered trademark of Dupont Company and Mitsui Dupont Chemical Company for their fluoride resin.


## **Ordering Information**

| Sha        | ре     | Sensing c | listance | Output<br>specifications | Operating<br>status | Model      |
|------------|--------|-----------|----------|--------------------------|---------------------|------------|
|            | MIO    | 2mm       |          | DC 2-wire                |                     | E2FQ-X2D1  |
|            | M12    | 211111    |          | DC 3-wire NPN            |                     | E2FQ-X2E1  |
| 01.1.1.1.1 | M18 5r |           |          | DC 2-wire                |                     | E2FQ-X5D1  |
| Shielded   |        | 5mm       |          | DC 3-wire NPN            | NO                  | E2FQ-X5E1  |
|            |        |           |          | AC 2-wire Models         | NO                  | E2FQ-X5Y1  |
| E#A        |        |           |          | DC 2-wire                |                     | E2FQ-X10D1 |
|            | M30    | 10m       | m        | DC 3-wire NPN            |                     | E2FQ-X10E1 |
|            |        |           |          | AC 2-wire Models         |                     | E2FQ-X10Y1 |


## **Characteristic data (typical)**



#### E2FQ-X5



#### E2FQ-X10



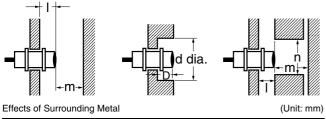
## **Rating/Performance**

|                                       | Model                                                                                 | E2FQ-X2E1                                                                                                                                                                                    | E2FQ-X5E1                                                                | E2FQ-X10E1                              |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|--|--|
| Item                                  |                                                                                       | E2FQ-X2D1                                                                                                                                                                                    | E2FQ-X5D1, E2FQ-X5Y1                                                     | E2FQ-X10D1, E2FQ-X10Y1                  |  |  |
| Sensing dist                          | ance                                                                                  | 2 mm ±10%                                                                                                                                                                                    | 5 mm ±10%                                                                | 10 mm ±10%                              |  |  |
| Setting dista                         | ince                                                                                  | 0 to 1.6 mm                                                                                                                                                                                  | 0 to 4 mm                                                                | 0 to 8 mm                               |  |  |
| Differential d                        | distance                                                                              | E1, Y1 models: 10% max. of sensin                                                                                                                                                            | ig distance                                                              |                                         |  |  |
| Sensing obje                          | ect                                                                                   | Ferrous metal (Sensitivity lowers wi                                                                                                                                                         | th non-ferrous metals)                                                   |                                         |  |  |
| Standard ser<br>(mild steel)          | nsing object                                                                          | 12 x 12 x 1 mm                                                                                                                                                                               | 18 x 18 x 1 mm                                                           | 30 x 30 x 1 mm                          |  |  |
| Response fr                           | equency*1                                                                             | E1 models: 1.5 kHz<br>D1 models: 800 Hz                                                                                                                                                      | E1 models: 600 Hz,<br>D1 models: 500 Hz<br>Y1 models: 25 Hz              | E1 models: 400 Hz,<br>D1 models: 300 Hz |  |  |
| Power suppl<br>(Operating v<br>range) |                                                                                       | E1 models: 12 to 24 VDC, ripple (p-<br>D1 models: 12 to 24 VDC, ripple (p-                                                                                                                   |                                                                          |                                         |  |  |
| Current cons                          | sumption                                                                              | E1 models: 17 mA max.                                                                                                                                                                        |                                                                          |                                         |  |  |
| Leakage cur                           | rrent                                                                                 | D1 models: 0.8 mA max., Y models                                                                                                                                                             | : 5 to 300 mA                                                            |                                         |  |  |
| Control                               | Switching<br>capacity                                                                 | E1 models: 200 mA max., D1 mode                                                                                                                                                              | E1 models: 200 mA max., D1 models: 5 to 100 mA DC, Y models: 5 to 300 mA |                                         |  |  |
| output                                | Residual<br>voltage                                                                   | E1 models: 2 V max. (load current: 200 mA with cable length: 2 m)<br>Y models: Refer to the Specifications.<br>D1 models: 4.0 V max. (under load current of 100 mA with cable length of 2 m) |                                                                          |                                         |  |  |
| Indicator lam                         | np                                                                                    | E,D models: detection indicator (red), Y models: operation indicator (red)                                                                                                                   |                                                                          |                                         |  |  |
| •                                     | rating status<br>a sensing object E1 models, D1 models and Y1 models: NO<br>reaching) |                                                                                                                                                                                              |                                                                          |                                         |  |  |
| Protective ci                         | rcuits                                                                                | E1 models: Protection for reverse p                                                                                                                                                          | olarity, load short circuit, surge volta                                 | ge                                      |  |  |
| Ambient tem                           | nperature                                                                             | Operating/Storage: -25°C to 70°C (                                                                                                                                                           | with no icing or condensation)                                           |                                         |  |  |
| Ambient hun                           | nidity                                                                                | Operating/Storage: 35% to 95%RH                                                                                                                                                              | (with no condensation)                                                   |                                         |  |  |
| Temperature                           | e influence                                                                           | 10% max. of sensing distance at 23                                                                                                                                                           | °C within temperature range of -25°                                      | C to 70°C                               |  |  |
| Voltage influ                         | ience                                                                                 | E1 models: ±2.5% max. of sensing                                                                                                                                                             | distance within rated voltage range =                                    | ±15%                                    |  |  |
| Insulation re                         | sistance                                                                              | 50 M $\Omega$ min. (at 500 VDC) between                                                                                                                                                      | energized parts and case                                                 |                                         |  |  |
| Dielectric str                        | rength                                                                                | E1, D1 models: 1,000 VAC 50/60 H                                                                                                                                                             | z for 1 min between energized parts                                      | and case                                |  |  |
| Vibration res                         | sistance                                                                              |                                                                                                                                                                                              | puble amplitude for 2 hours each in $\lambda$                            | K, Y, and Z directions                  |  |  |
| Shock resist                          | ance                                                                                  | Destruction: 500 m/s <sup>2</sup> for 10 times<br>each in X, Y, and Z directions                                                                                                             | Destruction: 1,000 m/s <sup>2</sup> for 10 times                         | s each in X, Y, and Z directions        |  |  |
| Protective structure IEC60529 IP67    |                                                                                       |                                                                                                                                                                                              |                                                                          |                                         |  |  |
| Connection I                          | method                                                                                | Pre-wired models (standard length:                                                                                                                                                           | 2 m)                                                                     |                                         |  |  |
| Weight (Pac                           | ked state)                                                                            | Approx. 70 g                                                                                                                                                                                 | Approx. 130 g                                                            | Approx. 170 g                           |  |  |
| Material                              | Case<br>Sensing<br>surface                                                            | Teflon *2                                                                                                                                                                                    |                                                                          |                                         |  |  |
| Accessories                           |                                                                                       | Instruction manual                                                                                                                                                                           |                                                                          |                                         |  |  |

\*1. The response frequencies for DC switching are average values measured on condition that the distance between each sensing object is twice as large as the size of the sensing object and the sensing distance set is half of the maximum sensing distance.
 \*2. Teflon is a registered trademark of Dupont Company and Mitsui Dupont Chemical Company for their fluoride resin.

## **Output Circuit Diagram**

| Operating<br>status | Output<br>specifications | Model                                | Timing chart                                                                                                                                                                      | Output circuit                                                             |  |
|---------------------|--------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
|                     | NPN                      | E2FQ-X2E1<br>E2FQ-X5E1<br>E2FQ-X10E1 | Sensing Yes<br>object No<br>Load Operates<br>(between black<br>and blue leads) Releases<br>Output voltage<br>(between black<br>and blue leads) L<br>Operation ON<br>indicator OFF | Note:<br>1. 200 mA max.(load current)<br>2. When a transistor is connected |  |
| NO                  | DC 2-wire                | E2FQ-X2D1<br>E2FQ-X5D1<br>E2FQ-X10D1 | Sensing Yes<br>object No<br>Load Operates<br>Releases<br>Operation ON<br>indicator OFF                                                                                            | Note:<br>The load can be connected to<br>either the +V or the 0-V line.    |  |
|                     | AC 2-wire<br>Models      | E2FQ-X5Y1<br>E2FQ-X10Y1              | Sensing Yes<br>object No<br>Load Operates<br>Releases<br>Operation ON<br>indicator OFF                                                                                            | Main<br>circuit                                                            |  |

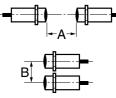

## **Precautions**

| <u> </u> |     |
|----------|-----|
| Correct  |     |
| COLLECT  | 030 |

#### Design

#### Effects of Surrounding Metal

Provide a minimum distance between the Sensor and the surrounding metal as shown in the table below.




| Model Item | I | d  | D | m  | n  |
|------------|---|----|---|----|----|
| E2FQ-X2    |   | 12 |   | 8  | 18 |
| E2FQ-X5    | 0 | 18 | 0 | 20 | 27 |
| E2FQ-X10   |   | 30 |   | 40 | 45 |

## Mutual Interference

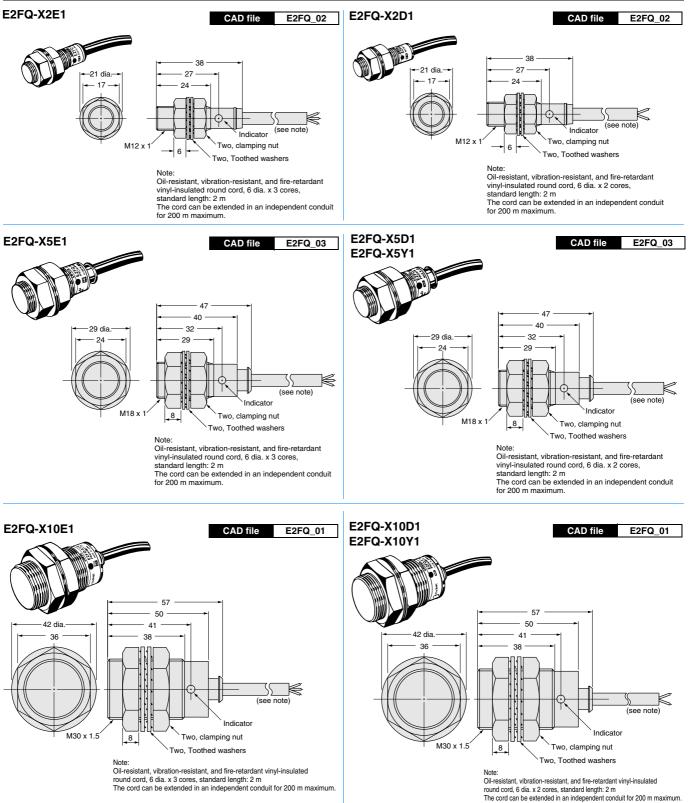
If more than one Proximity Sensor is installed face to face or in parallel, ensure that the distances between two Units adjacent to each other are the same as or larger than the corresponding values shown in the following table.

| Mutual Interferen | (Unit: mm) |     |    |
|-------------------|------------|-----|----|
| Model             | Item       | А   | В  |
| E2FQ-X2           |            | 30  | 20 |
| E2FQ-X5           |            | 50  | 35 |
| E2FQ-X10          |            | 100 | 70 |



#### Installation

Do not tighten the nut with excessive force. A washer must be used with the nut.




Note: The table below shows the value of tightening torques when using toothed washers.

| Model    | Torque | Tensile strength<br>(torque) |
|----------|--------|------------------------------|
| E2FQ-X2  |        | 0.98 Nm                      |
| E2FQ-X5  |        | 2 Nm                         |
| E2FQ-X10 |        | 2 INIII                      |

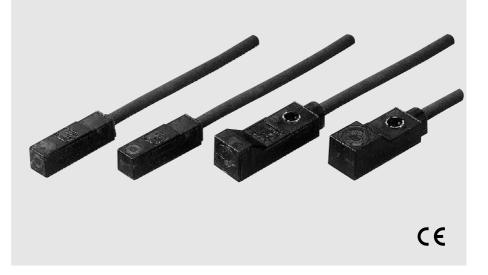
Others Chemical resistance

## **Dimensions (Unit: mm)**



Note: Oil-resistant, vibration-resistant, and fire-retardant vinyl-insulated round cord, 6 dia. x 2 cores, standard length: 2 m The cord can be extended in an independent conduit for 200 m maximum.

## **Mounting Holes**


| $\left( \right)$    | $\sum$ |
|---------------------|--------|
| $\overline{\nabla}$ | ノ      |
| <b>-</b> -F         | =►     |

| Model    | F (mm)                       |
|----------|------------------------------|
| E2FQ-X2  | 12.5 mm dia. <sup>+0.5</sup> |
| E2FQ-X5  | 18.5 mm dia. <sup>+0.5</sup> |
| E2FQ-X10 | 30.5 mm dia. $^{+0.5}_{0}$   |

## **Compact Square Inductive Proximity Sensor**



World's Smallest Square Sensor with Built-in Amplifier



## **Features**

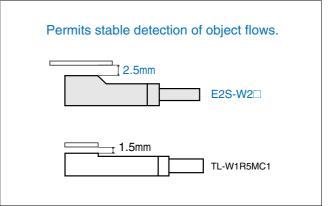
## 5.5 mm World's Smallest Sensor with Built-in Amplifier

The 5.5 mm x 5.5 mm type permits smaller, space-saving machines and devices.



## 1 kHz High-Speed Response

A 1 kHz response frequency is achieved matching increased machine and device speed.


## **IP67**

## Environment-Resistant Types

Full sealing structure housing, degree of protection IEC60529 IP67.

# **1.5 times** Long Sensing Distance (Compared to conventional models)

Long Sensing Distance: (E2S-□1, 1.6 mm) (E2S-□2, 2.5 mm)



# 1/20 Low Current Consumption (Compared to conventional models)

Significantly lower current consumption. The 0.8 mA (for 24 VDC) leakage current for the DC 2-wire type has a ratio of approximately 1/20 compared to the conventional DC 3-wire type. Optimum solution for multiple-sensor applications such as cam switches.

## **Ordering Information**

#### Sensors

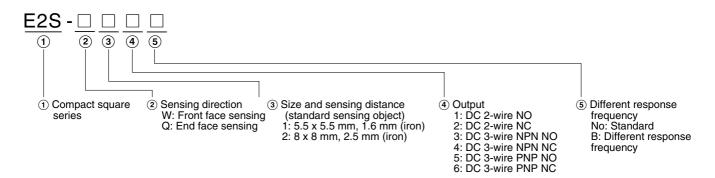
DC 2-wire Models

|            |                 |                  | Mc                               | del     |  |  |  |
|------------|-----------------|------------------|----------------------------------|---------|--|--|--|
| Shape      | Sensing surface | Sensing distance | ensing distance Operating status |         |  |  |  |
|            |                 |                  | NO                               | NC      |  |  |  |
|            | Front face      | 1.0mm            | E2S-W11 *                        | E2S-W12 |  |  |  |
| Unshielded | End face        | 1.6mm            | E2S-Q11 *                        | E2S-Q12 |  |  |  |
|            | Front face      | 0.5              | E2S-W21 *                        | E2S-W22 |  |  |  |
| 6//2       | End face        | 2.5mm            | E2S-Q21 *                        | E2S-Q22 |  |  |  |

\* Models with different response frequency are available (NO only). These model numbers take the form E2S-DDB (e.g., E2S-W11B)

#### DC 3-wire Models

|            |                 |                  | Quitout                  | Model    |          |  |  |
|------------|-----------------|------------------|--------------------------|----------|----------|--|--|
| Shape      | Sensing surface | Sensing distance | Output<br>specifications | Operatin | g status |  |  |
|            |                 |                  | specifications           | NO       | NC       |  |  |
|            | Front face      | 1.0mm            |                          | E2S-W13* | E2S-W14  |  |  |
|            | End face        | 1.6mm            | NPN                      | E2S-Q13* | E2S-Q14  |  |  |
|            | Front face      | 0.5              |                          | E2S-W23* | E2S-W24  |  |  |
| Unshielded | End face        | 2.5mm            |                          | E2S-Q23* | E2S-Q24  |  |  |
| E -        | Front face      |                  |                          | E2S-W15* | E2S-W16  |  |  |
| K/A        | End face        | 1.6mm            | PNP                      | E2S-Q15* | E2S-Q16  |  |  |
|            | Front face      | 0.5mm            |                          | E2S-W25* | E2S-W26  |  |  |
|            | End face        | 2.5mm            |                          | E2S-Q25* | E2S-Q26  |  |  |


\* Models with different response frequency are available (NO only). These model numbers take the form E2S-IIB (e.g., E2S-W11B)

## Accessories (Order Separately)

Mounting Brackets

| Shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Model     | Quantity | Remarks                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|------------------------|
| J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y92E-C1R6 |          | Provided with E2S-□1□□ |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y92E-C2R5 | 1        | Provided with E2S-□2□□ |
| s de la compañía de l | Y92E-D1R6 |          |                        |
| ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y92E-D2R5 |          |                        |

## Nomenclature



## **Rating/Performance**

#### DC 2-wire Models

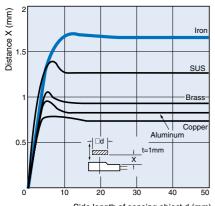
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maalal                  |                               |                              |                      |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------|------------------------------|----------------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Model                   | E2S-W11                       | E2S-Q11                      | E2S-W21              | E2S-Q21  |
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | E2S-W12                       | E2S-Q12                      | E2S-W22              | E2S-Q22  |
| Sensing s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | urface                  | Front face                    | End face                     | Front face           | End face |
| Sensing d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | istance                 | 1.6 mm ±10%                   | •                            | 2.5 mm ±15%          |          |
| Setting dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | stance                  | 0 to 1.2 mm                   |                              | 0 to 1.9 mm          |          |
| Differentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I distance              | 10% max.                      |                              |                      |          |
| Sensing o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | bject                   | Ferrous metal (Sensitivity le | owers with non-ferrous meta  | als)                 |          |
| Standard object                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sensing                 | Iron, 12 x 12 x 1 mm          |                              | lron, 15 x 15 x 1 mm |          |
| Response frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | 1 kHz min.                    |                              | •                    |          |
| Rated sup<br>(operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ply voltage<br>voltage) | 12 to 24 VDC (10 to 30 VD     | C), ripple (p-p): 10% max.   |                      |          |
| Leakage c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | urrent                  | 0.8 mA max.                   |                              |                      |          |
| Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Switching capacity      | 3 to 50 mA DC max.            |                              |                      |          |
| output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Residual voltage        | 3 V max. (under load curre    | nt of 50 mA with cable lengt | h of 1 m)            |          |
| Indicator lamp   Indicator lamp  Indicator lamp  Indicator lamp  Indicator lamp  Indicator lamp  Indicator (red LED), Operation set indicator (green LED)  Indicator lamp  Ind |                         |                               |                              |                      |          |
| Operating status<br>(with sensing object<br>approaching)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                               |                              |                      |          |

\* The response frequencies for DC switching are average values measured under the condition that the distance between each sensing object is twice as large as the size of the sensing object and the sensing distance set is half of the maximum sensing distance.

#### DC 3-wire Models

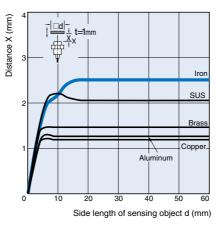
| Item                                                                                                                                     | Model E2S<br>Item E2S      |                                                                 | E2S-Q13<br>E2S-Q14 | E2S-W23<br>E2S-W24 | E2S-Q23<br>E2S-Q24 | E2S-W15<br>E2S-W16 | E2S-Q15<br>E2S-Q16 | E2S-W25<br>E2S-W26 | E2S-Q25<br>E2S-Q26 |  |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|
| Sensing s                                                                                                                                | urface                     | ce Front face End face F                                        |                    |                    | End face           | Front face         | End face           | Front face         | End face           |  |
| Sensing d                                                                                                                                | listance                   | 1.6 mm ±10%                                                     | 6                  | 2.5 mm ±15%        | 6                  | 1.6 mm ±10%        | %                  | 2.5 mm ±159        | %                  |  |
| Setting dis                                                                                                                              | stance                     | 0 to 1.2 mm                                                     |                    | 0 to 1.9 mm        |                    | 0 to 1.2 mm        |                    | 0 to 1.9 mm        |                    |  |
| Differentia                                                                                                                              | al distance                | 10% max.                                                        |                    |                    |                    |                    |                    |                    |                    |  |
| Sensing o                                                                                                                                | bject                      | Ferrous meta                                                    | al                 |                    |                    |                    |                    |                    |                    |  |
| Standard<br>object                                                                                                                       | sensing                    | Iron, 12 x 12                                                   | x 1 mm             | lron, 15 x 15      | x 1 mm             | Iron, 12 x 12      | x 1 mm             | Iron, 15 x 15      | 5 x 15 x 1 mm      |  |
| Response                                                                                                                                 | frequency                  | 1 kHz min.                                                      |                    | 1                  |                    | ll.                |                    |                    |                    |  |
| Rated sup<br>(operating                                                                                                                  | oply voltage<br>j voltage) | 12 to 24 VDC                                                    | C (10 to 30 VD     | C), ripple (p-p    | ): 10% max.        |                    |                    |                    |                    |  |
| Current co                                                                                                                               | onsumption                 | 13 mA max.                                                      | (24 VDC, unlo      | ad)                |                    |                    |                    |                    |                    |  |
| Control                                                                                                                                  | Switching capacity         | NPN open co                                                     | ollector 100 m     | A max. (30 VD      | OC max.)           | PNP open co        | ollector 50 mA     | max. (30 VDC       | C max.)            |  |
| output                                                                                                                                   | Residual voltage           | 1 V max. (under load current of 50 mA with cable length of 1 m) |                    |                    |                    |                    |                    |                    |                    |  |
| Indicator I                                                                                                                              | amp                        | Operation indicator (orange)                                    |                    |                    |                    |                    |                    |                    |                    |  |
| Operating status<br>(with sensing object<br>approaching)       3 models: NO       5 models: NO         1 3 models: NO       6 models: NC |                            |                                                                 |                    |                    |                    |                    |                    |                    |                    |  |

\* The response frequencies for DC switching are average values measured under the condition that the distance between each sensing object is twice as large as the size of the sensing object and the sensing distance set is half of the maximum sensing distance.


## **Specifications**

| Item          | Model        | E2S-□□□                                                                                   |  |  |  |  |
|---------------|--------------|-------------------------------------------------------------------------------------------|--|--|--|--|
| Protective of | circuits     | Reverse polarity connection and surge absorber                                            |  |  |  |  |
| Ambient ter   | nperature    | Operating: -25°C to 70°C, Storage: -40°C to 85°C (with no icing or condensation)          |  |  |  |  |
| Ambient hu    | midity       | Operating: 35% to 90%RH, Storage: 35% to 95%RH (with no condensation)                     |  |  |  |  |
| Temperatur    | re influence | ±15% max. of sensing distance at 23°C in temperature range of -25°C to 70°C               |  |  |  |  |
| Voltage influ | uence        | $\pm 2.5\%$ max. of sensing distance within a range of $\pm 10\%$ of rated supply voltage |  |  |  |  |
| Insulation re | esistance    | 50 M $\Omega$ min. (at 500 VDC) between energized parts and case                          |  |  |  |  |
| Dielectric st | trength      | 1,000 VAC for 1 min between energized parts and case                                      |  |  |  |  |
| Vibration re  | sistance     | 10 to 55 Hz, 1.5-mm double amplitude for 2 hours each in X, Y, and Z directions           |  |  |  |  |
| Shock resis   | stance       | Destruction: 500 m/s2 for 3 times each in X, Y, and Z directions                          |  |  |  |  |
| Protective s  | structure    | IEC60529 IP67                                                                             |  |  |  |  |
| Connection    | method       | Pre-wired models (Standard length: 3 m)                                                   |  |  |  |  |
| Weight (Pa    | cked state)  | Approx. 10 g                                                                              |  |  |  |  |
| Material      | Case         | Polyarylate                                                                               |  |  |  |  |
| Accessories   | S            | Mounting Brackets                                                                         |  |  |  |  |

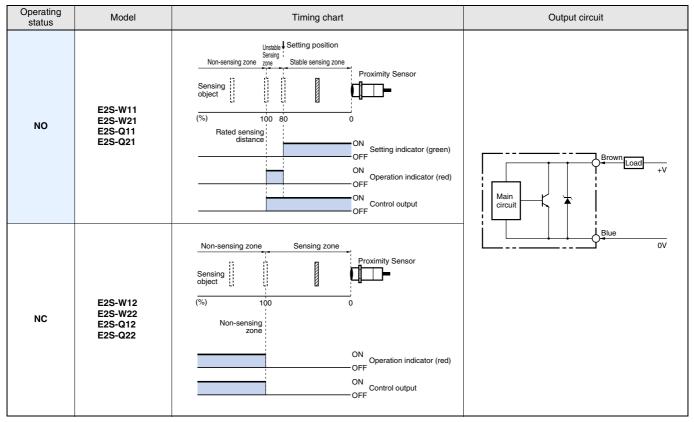
## Characteristic data (typical)


## Sensing Distance vs. Sensing Object

## E2S-W1□/-Q1□






#### E2S-W2\_/-Q2\_



E2S

## **Output Circuit Diagram**

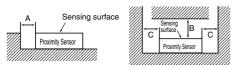
#### DC 2-wire Models



#### DC 3-wire Models

| Operating<br>status | Output<br>specifications | Model                                    | Timing chart                                                                                                            | Output circuit                           |
|---------------------|--------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| NO                  | NPN                      | E2S-W13<br>E2S-W23<br>E2S-Q13<br>E2S-Q23 | Sensing object<br>Sensing object<br>Output transistor (load)<br>OFF<br>Operation indicator (orange)<br>OFF<br>ON<br>OFF | Brown<br>+V<br>Load<br>Main              |
| NC                  |                          | E2S-W14<br>E2S-W24<br>E2S-Q14<br>E2S-Q24 | Sensing object<br>Sensing object<br>Output transistor (load)<br>OFF<br>Operation indicator (orange)<br>OFF              | Blue OV<br>* Maximum load current: 50 mA |
| NO                  | PNP                      | E2S-W15<br>E2S-W25<br>E2S-Q15<br>E2S-Q25 | Sensing object<br>Ves<br>No<br>Output transistor (load)<br>OFF<br>Operation indicator (orange)<br>OFF                   | Brown<br>+V<br>Main<br>circuit           |
| NC                  |                          | E2S-W16<br>E2S-W26<br>E2S-Q16<br>E2S-Q26 | Sensing object<br>Ves<br>No<br>Output transistor (load)<br>OFF<br>Operation indicator (orange)<br>OFF                   | * Maximum load current: 50 mA            |

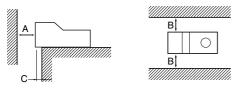
## **Precautions**


Correct Use

#### Design

#### Effects of Surrounding Metal

Provide a minimum distance between the Sensor and the surrounding metal as shown in the table below.


Front Surface Sensing Type (Not exceeding the sensor head height)

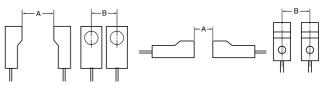


#### (Unit: mm)

| Model Length | А | В  | С  |
|--------------|---|----|----|
| E2S-W1       | 0 | 8  | 2  |
| E2S-W2       | 0 | 15 | 10 |

End Surface Sensing Type




#### (Unit: mm)

| Model Length | А  | В  | С |
|--------------|----|----|---|
| E2S-Q1       | 8  | 3  | 2 |
| E2S-Q2       | 15 | 10 | 3 |

#### **Mutual Interference**

If more than one Sensor is located face to face or in parallel, be sure to maintain enough space between adjacent Sensors to suppress mutual interference as provided in the following diagram,.

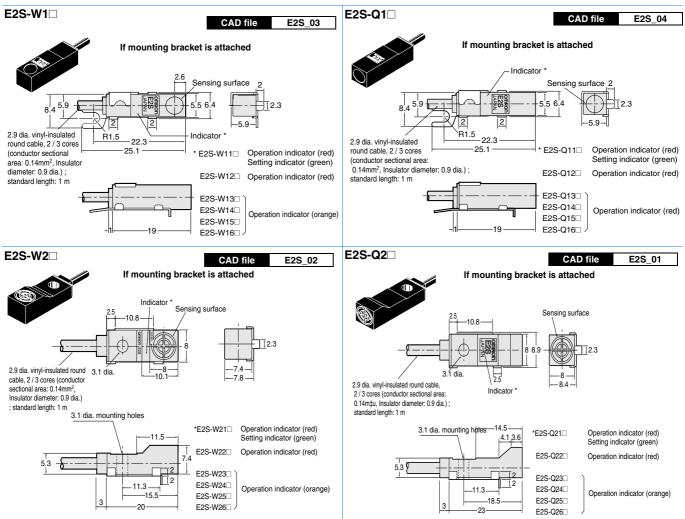
Front Surface Sensing End Surface Sensing Type Type



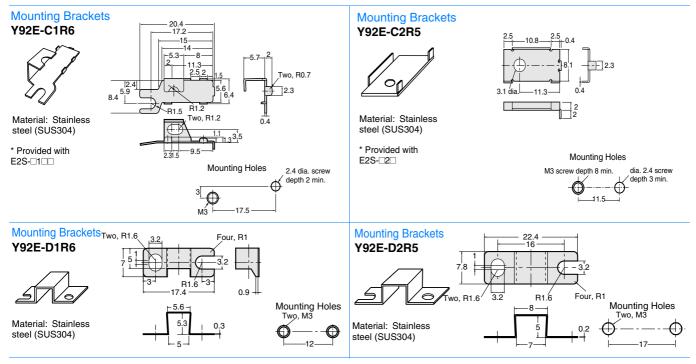
#### (Unit: mm)

| Model   | Length | А       | В        |
|---------|--------|---------|----------|
| E2S-W(Q | )1□    | 50 (40) | 20 (5.5) |
| E2S-W1  | ]      | 75 (50) | 25 (8)   |

Note: The above values in parentheses are applicable when using two sensors with different frequencies.


#### Mounting

#### **Tightening torgues**


Do not tighten the E2S-W(Q)2 mounting screws to a torque exceeding 0.7 Nm.

## **Dimensions (Unit: mm)**





## Accessories (Order Separately\*)



## MEMO

|                                       |              |       |           |                   |        |                                         |        | ,           | <br>,           |                                       | , | <br>           |                |                     | ,                                     |
|---------------------------------------|--------------|-------|-----------|-------------------|--------|-----------------------------------------|--------|-------------|-----------------|---------------------------------------|---|----------------|----------------|---------------------|---------------------------------------|
| 1                                     | і і<br>і і   |       | r<br>F    | i<br>i            | r<br>F | i<br>I                                  |        |             | r<br>F          | і і<br>і і                            |   | r<br>F         | 1              | i<br>i              | i i                                   |
| 1 I                                   |              |       | l<br>L    | i<br>I            | l<br>L | 1<br>1                                  |        |             | l<br>L          | і і<br>і і                            |   | l<br>L         | 1              | 1<br>1              | i i                                   |
| [ ]                                   |              | <br>1 | 1<br>I    | г<br>I            | i      | ,                                       | r      |             | <br>)<br>I      | т — — — <sub>1</sub>                  |   | <br>1<br>1     |                | (<br>)              | )                                     |
| 1 I                                   | I I          |       | l<br>L    | i<br>I            | l<br>L | i<br>I                                  |        |             | l<br>L          | i i                                   |   | l<br>L         | 1              | i<br>I              | 1 I                                   |
| } <u> </u>                            |              |       |           | <u> </u>          |        | ¦                                       |        |             | <br>            | <u> </u>                              |   | <br>           |                |                     | { <del> </del>                        |
| 1 I                                   |              |       | l<br>L    | i<br>I            | l<br>L | i<br>I                                  |        |             | l<br>L          | i i                                   |   | l<br>L         |                | i<br>I              | i i                                   |
| 1 1<br>1 1                            | <br>         |       |           | L                 |        |                                         |        |             | <br>            | <br>                                  |   | <br>           |                | i<br>12 - 2 - 2 - 2 |                                       |
| i i                                   | і і<br>і і   |       | r<br>F    | i<br>i            | r<br>F | i<br>i                                  |        |             | r<br>F          | i i                                   |   | r<br>F         |                | i<br>i              | i i                                   |
| 1 I                                   |              |       | r<br>F    | i<br>i            | r<br>F | i<br>i                                  |        |             | r<br>F          | і і<br>і і                            |   | r<br>F         |                | i<br>i              | i i                                   |
| F = 1                                 | <br>         |       | ( )<br>(  | +                 | <br>   | (                                       | •      | ⊢ – – – – I | <br>(           | + 1                                   |   | <br>( )<br>(   | ⊢ – – – –<br>I | (<br>(              | 1 – – – 4<br>1 – 1                    |
| 1 I                                   |              |       | l<br>L    | i<br>I            | l<br>L | i<br>I                                  |        |             | l<br>L          | i i                                   |   | l<br>L         |                | i<br>I              | i i                                   |
|                                       |              |       | ,<br>,    | ,<br>             | <br>   | ¦                                       | r      |             | <br>,<br>       | ,<br>                                 |   | <br>,<br>      |                | ¦                   | , <u>'</u>                            |
| i i                                   | і і<br>і і   |       | r<br>F    | i<br>i            | r<br>F | i<br>i                                  |        |             | r<br>F          | i i                                   |   | r<br>F         |                | i<br>i              | i i                                   |
| i i                                   |              |       | i<br>I    | i<br>I            |        | i<br>I                                  |        |             | i<br>I          | і і<br>І І                            |   | i<br>I         |                | i<br>I              | i i                                   |
|                                       | <sub>1</sub> |       |           | <br>I             | ,<br>I | ,                                       |        |             | <br>            | · ·                                   |   | <br>           |                | ,                   |                                       |
| · ·                                   | і і<br>І і   |       | r<br>F    | i<br>I            | r<br>F | i<br>I                                  |        |             | r<br>F          | i i                                   |   | r<br>F         |                | i<br>I              | i i                                   |
|                                       |              | 4     | !         | <u>L</u>          |        |                                         |        |             | <br>            |                                       |   | <br>!          | L              |                     |                                       |
| · ·                                   | і і<br>І і   |       | r<br>F    | i<br>I            | r<br>F | i<br>I                                  |        |             | r<br>F          | і і<br>І І                            |   | r<br>F         |                | i<br>I              | i i                                   |
|                                       |              |       | . – – – – | ı<br>+            | ı<br>  |                                         |        | · · · · · · | <br>            | <br>+                                 |   | <br>. – – – –  |                | i<br>1              |                                       |
| 1 1                                   |              |       | l<br>I    | i<br>I            | l<br>I | i<br>I                                  |        |             | l<br>I          | , , , , , , , , , , , , , , , , , , , |   | l<br>I         | 1              | i<br>I              | 1 1<br>1 1                            |
| 1                                     |              |       | l<br>I    | 1<br>1            | l<br>I | 1<br>1                                  |        |             | l<br>I          | <br>                                  |   | l<br>I         | 1              | 1<br>1              | <br>                                  |
| r                                     | i            |       | 1<br>I    | г<br>I            | i<br>i | ( -  -  -  -  -  -  -  -  -  -  -  -  - | r<br>I |             | <br>) ·         | г i<br>,                              |   | <br>1<br>1     | <br>'          | (<br>)              | 1 i                                   |
| i i                                   |              |       | i<br>I    | i<br>I            |        | i<br>I                                  |        |             | i<br>I          | і і<br>І І                            |   | i<br>I         |                | i<br>I              | i i                                   |
|                                       |              |       |           | <u>-</u>          |        | ¦                                       |        |             | <br>            |                                       |   | <br>           |                |                     |                                       |
|                                       |              |       |           | 1                 |        | 1                                       |        |             |                 | <br>                                  |   |                |                | 1                   |                                       |
|                                       |              |       |           | 1                 |        | 1                                       |        |             |                 | <br>                                  |   |                |                | 1                   |                                       |
|                                       |              |       |           |                   | ·<br>· |                                         |        |             | <br>,           |                                       |   | <br>           |                | ·                   |                                       |
|                                       |              |       |           | 1                 |        | 1                                       |        |             |                 |                                       |   |                |                | 1                   |                                       |
|                                       |              |       |           | +                 |        |                                         |        |             | <br>            |                                       |   | <br>           |                |                     |                                       |
|                                       |              |       |           | 1                 |        | 1                                       |        |             |                 | <br>                                  |   |                |                | 1                   |                                       |
|                                       |              |       |           | <br>              |        |                                         |        |             | <br>. – – – – . |                                       |   |                |                | -<br>               |                                       |
|                                       |              |       |           |                   |        |                                         |        |             |                 |                                       |   |                |                |                     |                                       |
|                                       |              |       |           |                   |        |                                         |        |             |                 |                                       |   |                |                |                     |                                       |
|                                       |              |       |           | <u>.</u>          |        |                                         |        |             | <br>            |                                       |   | <br>           |                | ;                   |                                       |
|                                       |              |       |           |                   |        |                                         |        |             |                 |                                       |   |                |                |                     |                                       |
|                                       |              |       | !         | L                 |        |                                         |        |             | <br>            |                                       |   | <br>!          |                |                     |                                       |
|                                       |              |       |           |                   |        |                                         |        |             |                 |                                       |   |                |                |                     |                                       |
| · · · ·                               | י<br>ו       |       |           |                   | ı<br>  | ,<br>,<br>,                             |        |             | <br>            | , ,<br>, , ,<br>, , , , , , ,         |   | <br>           |                |                     | ,<br>, ,                              |
| 1                                     |              |       |           |                   |        |                                         |        |             |                 |                                       |   |                |                |                     |                                       |
|                                       |              |       | I<br>I    | 1                 | I<br>I | l<br>I<br>I                             |        |             | I<br>I          |                                       |   | I<br>I         |                | ,<br> <br>          |                                       |
| r                                     | ,            |       |           |                   |        | ;<br><br>!                              |        |             | <br>            |                                       |   | <br>           |                |                     | 1 i                                   |
| 1 1                                   |              |       | l<br>I    | 1                 |        | 1                                       |        |             | l<br>I          | 1 I                                   |   | l<br>I         |                | 1                   | , , , , , , , , , , , , , , , , , , , |
|                                       |              |       |           | <u>-</u>          |        |                                         |        |             | <br>            |                                       |   | <br>           |                |                     | ;                                     |
|                                       |              |       | I<br>I    | 1<br>1            | I<br>I |                                         |        |             | I<br>I          | י<br>ו ו<br>ן י                       |   | I<br>I         |                | 1                   | , , , , , , , , , , , , , , , , , , , |
|                                       |              |       | I<br>I    | 1<br>1            | I<br>I |                                         |        |             | I<br>I          | י<br>ו ו<br>ן י                       |   | I<br>I         |                | 1                   | , , , , , , , , , , , , , , , , , , , |
|                                       |              |       |           |                   |        | '<br> <br> <br>                         |        |             |                 |                                       |   |                |                |                     | · J<br>                     <br>      |
|                                       |              |       | I<br>I    | 1<br>1            | I<br>I | 1<br>1                                  |        |             | I<br>I          | י<br>ו ו<br>ן י                       |   | I<br>I         |                | ,<br>1<br>1         | , , , , , , , , , , , , , , , , , , , |
| • i                                   |              |       | ( )       | +                 |        | <br>                                    |        | H           | <br>            | + 1                                   |   | <br>( )        |                |                     |                                       |
|                                       |              |       |           | <br>              | I      | <br>                                    |        |             |                 |                                       |   |                |                | 1                   | · · ·                                 |
|                                       | ,            |       | <br>      | !<br><del> </del> |        | i<br>i<br>i<br>i                        | ,      |             | <br> <br>       |                                       |   | <br> <br>      |                |                     |                                       |
|                                       |              |       |           | <br>              | I      | <br>                                    |        |             |                 |                                       |   |                |                |                     | · · ·                                 |
|                                       |              |       |           | 1                 |        |                                         |        |             |                 |                                       |   |                |                | 1                   | , ,<br>, ,                            |
| ;                                     |              |       |           | <u>.</u>          | '<br>' | ;                                       |        |             | <br>·           | ·  <br>                               |   | <br>           |                | ;                   | ; <u>-</u>                            |
| .  <br>                               |              |       | I         | 1                 | I      | <br> <br> <br>                          |        |             | I               |                                       |   | I              |                | 1                   |                                       |
|                                       |              |       |           |                   |        |                                         |        |             | <br>            | '                                     |   | <br>           |                |                     | !                                     |
|                                       |              |       | I         | 1                 | I      |                                         |        |             | I               |                                       |   |                |                | 1<br>1<br>1         | 1 1                                   |
| · · · · · · · · · · · · · · · · · · · |              |       | <br>      | <br>              | <br>   | <br>                                    |        |             | <br> <br>       |                                       |   | <br> <br> <br> | <br> <br>      |                     |                                       |
| '                                     |              |       |           |                   |        |                                         |        |             | <br>            | '                                     |   | <br>           |                |                     |                                       |

## Flat size Proximity Sensors

TL-W

# Space-Saving Flat Proximity Sensor



## **Ordering Information**

DC 2-wire Models

|       |            | N                |  |  |               | odel                   |  |  |
|-------|------------|------------------|--|--|---------------|------------------------|--|--|
| Shape | Ser        | Sensing distance |  |  | Output and op | perating status        |  |  |
|       |            |                  |  |  | NO            | NC                     |  |  |
|       | <b>5</b> m | m                |  |  | TL-W5MD1*1    | TL-W5MD2 <sup>*1</sup> |  |  |

#### DC 3-wire Models

|          |             |          | Quitout        | Model                              |          |                          |                         |  |  |  |
|----------|-------------|----------|----------------|------------------------------------|----------|--------------------------|-------------------------|--|--|--|
| Shape    | Sensing of  | distance | specifications | Output Output and operating status |          |                          |                         |  |  |  |
|          |             |          | specifications | PNP-NO                             | PNP-NC   | NPN-NO                   | NPN-NC                  |  |  |  |
|          | 1.5mm       |          |                | TL-W1R5MB1                         |          | TL-W1R5MC1 <sup>*1</sup> |                         |  |  |  |
|          | 3mm         |          | DC 3-wire      | TL-W3MB1                           | TL-W3MB2 | TL-W3MC1 <sup>*1</sup>   | TL-W3MC2                |  |  |  |
|          | <b>5</b> mm |          | - DC 3-wire -  | TL-W5MB1                           | TL-W5MB2 | TL-W5MC1 <sup>*1</sup>   | TL-W5MC2                |  |  |  |
|          |             | 20mm     |                |                                    |          | TL-W20ME1 <sup>*1</sup>  | TL-W20ME2 <sup>*1</sup> |  |  |  |
| Shielded | 5mm         |          | DC 3-wire      | TL-W5F1                            | TL-W5F2  | TL-W5E1                  | TL-W5E2                 |  |  |  |

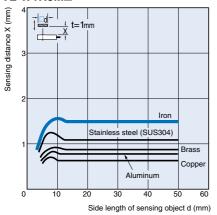
\*1. Models with different response frequency are available. These model numbers take the form TL-W5MDD5 (e.g., TL-W5MD15)

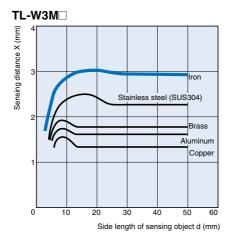
## **Rating/Performance**

## DC 2-wire Models

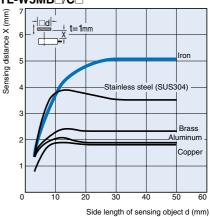
| Item                                                  | М                | Ddel TL-W5MD                                                                                                              |  |  |  |  |  |
|-------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Sensing dista                                         | nce              | 5 mm ±10%                                                                                                                 |  |  |  |  |  |
| Setting distan                                        | се               | 0 to 4 mm                                                                                                                 |  |  |  |  |  |
| Differential dis                                      | stance           | 10% max.                                                                                                                  |  |  |  |  |  |
| Sensing object                                        | ot               | Ferrous metal(Sensitivity decreases with non-ferrous metals)                                                              |  |  |  |  |  |
| Standard sens                                         | sing object      | Iron, 18 x 18 x 1 mm                                                                                                      |  |  |  |  |  |
| Response free                                         | quency           | 0.5 kHz                                                                                                                   |  |  |  |  |  |
| Rated supply (operating vol                           | -                | 12 to 24 VDC (10 to 30 VDC), ripple (p-p): 10% max.                                                                       |  |  |  |  |  |
| Leakage curre                                         | ent              | 0.8 mA max.                                                                                                               |  |  |  |  |  |
| Control S                                             | Switching capac  | ty 3 to 100 mA                                                                                                            |  |  |  |  |  |
| output F                                              | Residual voltage | 3.3 V max. (under load current of 100 mA with cable length of 2 m)                                                        |  |  |  |  |  |
| Indicator lamp                                        | )                | D1 models: Operation indicator (Red LED), Operation set indicator (Green LED)<br>D2 models: Operation indicator (Red LED) |  |  |  |  |  |
| Operating status<br>(with sensing object approaching) |                  | D1 models: NO<br>D2 models: NC                                                                                            |  |  |  |  |  |
| Protective circ                                       | cuits            | Surge absorber, short-circuit protection                                                                                  |  |  |  |  |  |
| Ambient temp                                          | erature          | Operating/Storage: -25°C to 70°C (with no icing or condensation)                                                          |  |  |  |  |  |
| Ambient humi                                          | dity             | Operating/Storage: 35% to 95%RH (with no condensation)                                                                    |  |  |  |  |  |
| Temperature                                           | influence        | $\pm 10\%$ max. of sensing distance at 23°C within a temperature range of -25°C and 70°C                                  |  |  |  |  |  |
| Voltage influe                                        | nce              | $\pm 2.5\%$ max. of Sensing distance within a rated voltage range $\pm 15\%$ .                                            |  |  |  |  |  |
| Insulation resi                                       | istance          | 50 M $\Omega$ min. (at 500 VDC) between energized parts and case                                                          |  |  |  |  |  |
| Dielectric stre                                       | ngth             | 1,000 VAC for 1 min between energized parts and case                                                                      |  |  |  |  |  |
| Vibration resis                                       | stance           | 10 to 55 Hz, 1.5 mm double amplitude for 2 hours each in X, Y, and Z directions                                           |  |  |  |  |  |
| Shock resista                                         | nce              | Destruction: 500 m/s <sup>2</sup> for 3 times each in X, Y, and Z directions                                              |  |  |  |  |  |
| Protective stru                                       | ucture           | IEC60529 IP67                                                                                                             |  |  |  |  |  |
| Connection method                                     |                  | Pre-wired models (standard length: 2 m)                                                                                   |  |  |  |  |  |
| Weight (Packe                                         | ed state)        | Approx. 45 g                                                                                                              |  |  |  |  |  |
|                                                       | Case             |                                                                                                                           |  |  |  |  |  |
| Material                                              | Sens<br>surfa    | 5                                                                                                                         |  |  |  |  |  |
| Accessories                                           |                  | Instruction manual                                                                                                        |  |  |  |  |  |

\* The response frequencies for DC switching are average values measured under the condition that the distance between each sensing object is twice as large as the size of the sensing object and the sensing distance set is half of the maximum sensing distance.

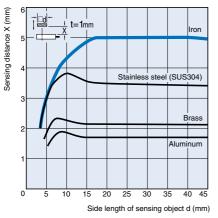

#### DC 3-wire Models


|                                      | Model                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                            |                                                                                                         |                                                                  |                                                                             |  |  |  |  |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|
| Item                                 | Model                                                                                                                                                                                                                                                                                                                                                | TL-W1R5M⊡1                                                          | TL-W3M□□                                                                   | TL-W5M                                                                                                  | TL-W5E□/F□                                                       | TL-W20ME□                                                                   |  |  |  |  |  |
| Sensing of                           | ensing distance 1.5 mm ±10% 3 mm ±10% 5                                                                                                                                                                                                                                                                                                              |                                                                     | 5 mm ±10%                                                                  |                                                                                                         | 20 mm ±10%                                                       |                                                                             |  |  |  |  |  |
| Setting di                           | Setting distance 0 to 1.2 mm 0 to 2.4 mm 0 to                                                                                                                                                                                                                                                                                                        |                                                                     |                                                                            |                                                                                                         |                                                                  | 0 to 16 mm                                                                  |  |  |  |  |  |
| Differentia                          | Differential distance 10% max.                                                                                                                                                                                                                                                                                                                       |                                                                     |                                                                            |                                                                                                         |                                                                  |                                                                             |  |  |  |  |  |
| Sensing of                           | object                                                                                                                                                                                                                                                                                                                                               | Ferrous metal (ref                                                  | er to Engineering I                                                        | Data for non-ferrous                                                                                    | s metal on page E-55)                                            | T                                                                           |  |  |  |  |  |
| Standard object                      |                                                                                                                                                                                                                                                                                                                                                      | Iron, 8 x 8 x 1 mm                                                  | Iron, 12 x 12 x<br>1 mm                                                    | lron, 18 x 18 x 1 r                                                                                     | nm                                                               | lron, 50 x 50 x<br>1 mm                                                     |  |  |  |  |  |
| Response                             | e frequency                                                                                                                                                                                                                                                                                                                                          | 1 kHz min.                                                          | 600 Hz min.                                                                | 500 Hz min.                                                                                             | 300 Hz min.                                                      | 40 Hz min.                                                                  |  |  |  |  |  |
| Power su<br>(Operatin<br>range)      |                                                                                                                                                                                                                                                                                                                                                      | 12 to 24 VDC (10                                                    | to 30 VDC) ripple                                                          | (p-p): 10% max.                                                                                         | 10 to 30 VDC with a ripple (p-p) of 20% max.                     | 12 to 24 VDC (10<br>to 30 VDC) ripple<br>(p-p): 10% max.                    |  |  |  |  |  |
| Current c                            | onsumption                                                                                                                                                                                                                                                                                                                                           | 15 mA max. at 24                                                    | VDC (no-load)                                                              | 10 mA max.                                                                                              | 15mA max. at 24 VDC (no-load)                                    | 8 mA at 12 VDC,<br>15 mA at 24 VDC                                          |  |  |  |  |  |
| Control<br>output                    | Switching capacity                                                                                                                                                                                                                                                                                                                                   | NPN open collector 100 mA max.<br>(30 VDC max.)                     |                                                                            | NPN open col-<br>lector 12 VDC<br>50 mA max.<br>(30 VDC max.)<br>24 VDC 100 mA<br>max. (30 VDC<br>max.) | 200 mA                                                           | 12 VDC<br>100mA max.,<br>24 VDC<br>200 mA max.                              |  |  |  |  |  |
|                                      | Residual<br>voltage                                                                                                                                                                                                                                                                                                                                  | 1 V max. (under load current of<br>100 mA with cable length of 2 m) |                                                                            | 1 V max.<br>(under load<br>current of 50 mA<br>with cable length<br>of 2 m)                             | 2 V max. (under load current of 200 mA with cable length of 2 m) | 1 V max. (under<br>load current of<br>200 mA with ca-<br>ble length of 2 m) |  |  |  |  |  |
| Indicator                            | lamp                                                                                                                                                                                                                                                                                                                                                 | Detection indicato                                                  | Detection indicator (red LED)                                              |                                                                                                         |                                                                  |                                                                             |  |  |  |  |  |
| Operating<br>(with sense<br>approach | sing object                                                                                                                                                                                                                                                                                                                                          | NO                                                                  | C1 models: NO<br>C2 type: NC                                               |                                                                                                         | E1 models, F1 models: NO<br>E2 models, F2 models: NC             |                                                                             |  |  |  |  |  |
| Protective                           | e circuits                                                                                                                                                                                                                                                                                                                                           | Reverse connection protection, surge absorber                       |                                                                            |                                                                                                         |                                                                  |                                                                             |  |  |  |  |  |
| Ambient t                            | emperature                                                                                                                                                                                                                                                                                                                                           | Operating/Storage                                                   | e: -25°C to 70°^C (                                                        | with no icing or con                                                                                    | densation)                                                       |                                                                             |  |  |  |  |  |
| Ambient h                            | numidity                                                                                                                                                                                                                                                                                                                                             | Operating/Storage                                                   | e: 35% to 95%RH (                                                          | (with no condensati                                                                                     | on)                                                              |                                                                             |  |  |  |  |  |
| Temperat<br>ence                     | ture influ-                                                                                                                                                                                                                                                                                                                                          | ±10% max. of sen                                                    | sing distance at 23                                                        | 3°C within the temp                                                                                     | erature range of -25°C and 70°C                                  |                                                                             |  |  |  |  |  |
| -                                    | Voltage influence±2.5% max. of sensing distance<br>within a range of ±10% of rated<br>power supply voltage±2.5% max.<br>of sensing dis-<br>tance within a<br>range of ±20%<br>of rated power<br>supply voltage±2.5% max. of sensing dis-<br>tance within a<br>of sensing dis-<br>tance within a<br>range of ±20%<br>of rated power<br>supply voltage |                                                                     |                                                                            |                                                                                                         | in a range of ±10%                                               |                                                                             |  |  |  |  |  |
| Insulation                           | resistance                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                            | energized parts and                                                                                     |                                                                  |                                                                             |  |  |  |  |  |
| Dielectric                           |                                                                                                                                                                                                                                                                                                                                                      |                                                                     |                                                                            | en energized part a                                                                                     |                                                                  |                                                                             |  |  |  |  |  |
| Vibration                            | resistance                                                                                                                                                                                                                                                                                                                                           | 10 to 55 Hz, 1.5 m                                                  | nm double amplitud                                                         | de for 2 hours each                                                                                     | in X, Y, and Z directions                                        | Destruction:                                                                |  |  |  |  |  |
| Shock res                            | sistance                                                                                                                                                                                                                                                                                                                                             | Destruction: 500 r                                                  | struction: 500 m/s <sup>2</sup> for 3 times each in X, Y, and Z directions |                                                                                                         |                                                                  |                                                                             |  |  |  |  |  |
| Protective                           | e structure                                                                                                                                                                                                                                                                                                                                          | IEC60529 IP67                                                       |                                                                            |                                                                                                         |                                                                  |                                                                             |  |  |  |  |  |
| Connectio                            | on method                                                                                                                                                                                                                                                                                                                                            | Pre-wired models                                                    | (standard length: 2                                                        | 2 m)                                                                                                    |                                                                  |                                                                             |  |  |  |  |  |
| Weight<br>(Packed s                  | state)                                                                                                                                                                                                                                                                                                                                               | 30 g                                                                |                                                                            | Approx. 45 g                                                                                            | Approx. 70 g                                                     | Approx. 180 g                                                               |  |  |  |  |  |
| Material                             | Case                                                                                                                                                                                                                                                                                                                                                 | Heat-resistant AB                                                   | S resin                                                                    |                                                                                                         | Diecast aluminum                                                 | Heat-resistant<br>ABS resin                                                 |  |  |  |  |  |
|                                      | Sensing surface                                                                                                                                                                                                                                                                                                                                      | Heat-resistant AB                                                   |                                                                            |                                                                                                         |                                                                  |                                                                             |  |  |  |  |  |
| Accessor                             | ies                                                                                                                                                                                                                                                                                                                                                  |                                                                     | Mounting bracket,<br>instruction manual                                    |                                                                                                         |                                                                  |                                                                             |  |  |  |  |  |

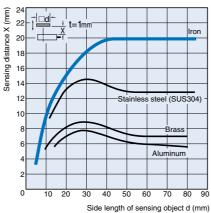
## Characteristic data (typical)


## Sensing Distance vs. Sensing Object

## TL-W1R5M□





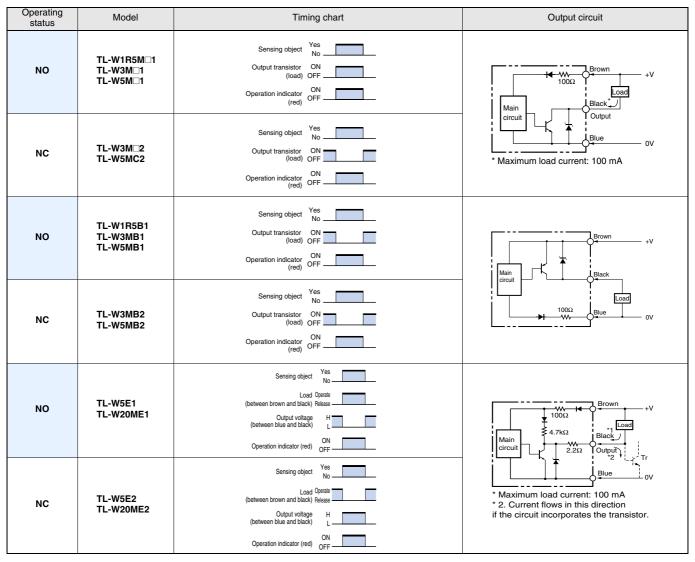


#### TL-W5MB□/C□

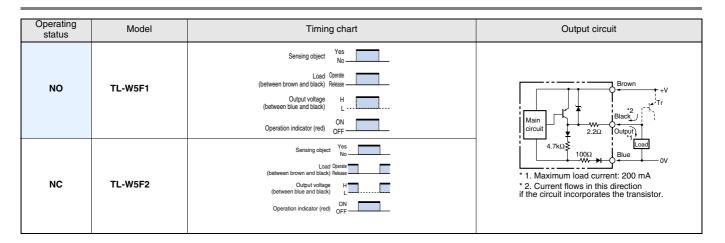


TL-W5E /-W5F /-W5MD









## **Output Circuit Diagram**

#### DC 2-wire Models

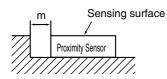
| Operating<br>status | Model    | Timing chart                                                                                                                                                                                                                   | Output circuit                                                    |
|---------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| NO                  | TL-W5MD1 | Setting position<br>Non-sensing<br>Zone<br>Sensing zone<br>Sensing diject<br>(%) 100 80(TYP)<br>Rated sensing distance<br>ON<br>OFF<br>OFF<br>ON<br>Operation indicator (red)<br>OFF<br>ON<br>Control output                   | Brown Load +V                                                     |
| NC                  | TL-W5MD2 | Non-sensing zone     Sensing zone     Proximity Sensor       Sensing<br>object     100     0       (%)     100     0       Rated sensing distance     ON       OFF     OFF       ON     OFF       OFF     ON       OFF     OFF | Note:<br>The Load can be connected to either the +V and 0-V side. |

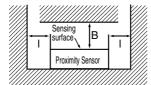
#### DC 3-wire Models





## **Precautions**


| Correct Use |
|-------------|
|-------------|

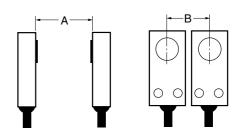

#### Design

#### Effects of Surrounding Metal

Provide a minimum distance between the Sensor and the surrounding metal as shown in the table below.

Front Surface Sensing Type (Not exceeding the sensor head height).






#### Effects of Surrounding Metal(Unit: mm)

| Model L       | .ength | I  | m  | n   |
|---------------|--------|----|----|-----|
| TL-W1R5M      |        | 2  |    | 8   |
| TL-W3M        |        | 3  | 0  | 12  |
| TL-W5MD       |        | 5  | 0  | 20  |
| TL-W5M        |        | 5  |    | 20  |
| TL-W20ME      |        | 25 | 16 | 100 |
| TL-W5ED/-W5FD |        | 0  | 0  | 20  |

#### Mutual Interference

If two or more Sensors are mounted face to face or side by side, keep them separate at the following minimum distance.



#### Mutual Interference (unit: mm)

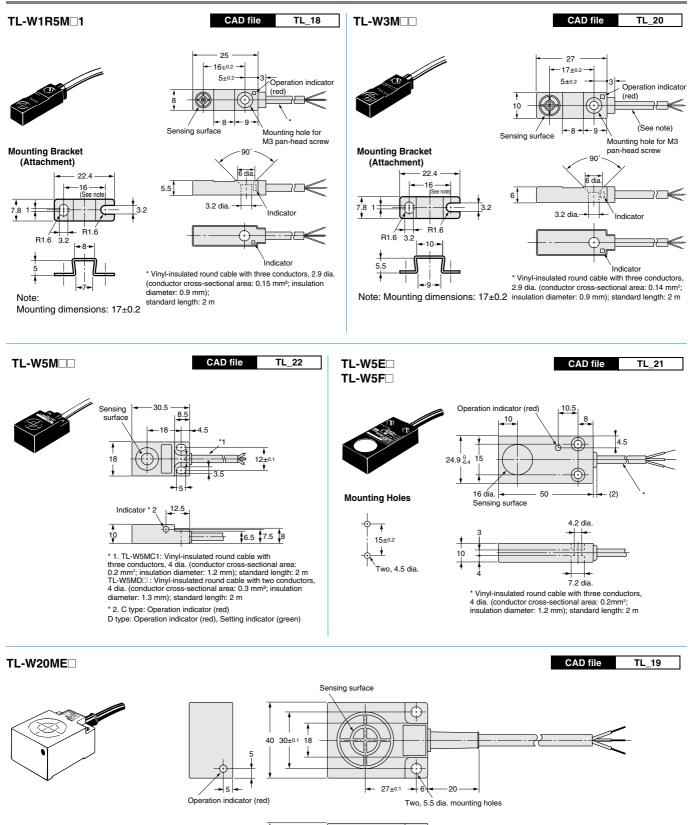
| Model        | Length | А        | В        |
|--------------|--------|----------|----------|
| TL-W1R5M     |        | 75 (50)  | 120(60)  |
| TL-W3MC      |        | 90 (60)  | 200(100) |
| TL-W5MD      |        | 120(80)  | 60(30)   |
| TL-W5MC      |        | 120(80)  | 00(30)   |
| TL-W20ME     |        | 200(100) | 200(100) |
| TL-W5E /-W5F |        | 50       | 35       |

Note: The above values in parentheses are applicable when using two sensors with different frequencies.

Installation

Use M3 flat-head screws to install TL-W1R5M $\square$  and TL-W3M $\square$ .

Ensure that the resin cover should be tightened with a torque according to the following table.


| Model      | Tensile strength (torque) |  |  |
|------------|---------------------------|--|--|
| TL-W1R5MC1 |                           |  |  |
| TL-W3MC    | 0.98 Nm                   |  |  |
| TL-W5MD    |                           |  |  |
| TL-W20M    | 1.5 Nm                    |  |  |

#### Adjustment

#### Power ON

Please note that the power injection AND connection generate an error pulse for approximately 1 ms.

## **Dimensions (Unit: mm)**



23 <sup>†</sup> 18

53

-1.5

Vinvl-insulated round cable with three conductors.

6 dia. (conductor cross-sectional area: 0.5 mm<sup>2</sup>; insulation diameter: 1.9 mm); standard length: 2 m

## MEMO

|          | <u> </u> |   | <br>         |        |                                         |     |                | <br>,   |                                       |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |            |                      |
|----------|----------|---|--------------|--------|-----------------------------------------|-----|----------------|---------|---------------------------------------|---|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|----------------------|
| 1        | 1        |   | 1<br>1       | l<br>L | 1<br>1                                  |     | l<br>I         |         |                                       |   |                                       | 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 1<br>1     | 1                    |
| , i      | ,<br>I   |   |              |        |                                         |     |                |         | i i                                   |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |            | i i                  |
|          |          |   | <br>r<br>F   | ı<br>  | ¦                                       | ,   | і<br>с         | <br>    |                                       |   |                                       | ,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | ¦          | ¦'                   |
| 1<br>1   | 1        |   | 1<br>1       | l<br>I | 1<br>1                                  |     | l<br>I         |         |                                       |   | l<br>I                                | 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 1<br>1     | 1 I<br>1             |
| 1        | 1        |   | 1            | 1<br>1 | 1                                       |     | н.             |         |                                       |   |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1          | 1                    |
|          |          |   | <br>         |        |                                         |     |                | <br>    | ;                                     |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |            |                      |
| . I      | 1        |   | 1<br>1       | l<br>L | 1<br>1                                  |     | l<br>L         |         |                                       |   | l<br>I                                | 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 1<br>1     | 1 I<br>1             |
| 1<br>1   | 1        |   | l<br>I       | r<br>F | l<br>I                                  |     | r<br>r         |         |                                       |   |                                       | l<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 1          | 1                    |
|          | '        |   | <br>         | ·      |                                         |     |                | <br>    |                                       |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | ·          |                      |
| 1<br>1   | 1        |   | 1<br>1       | l<br>L | 1<br>1                                  |     | l<br>L         |         |                                       |   | l<br>I                                | 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 1<br>1     | 1 I<br>1             |
| 1        | 1        |   |              |        | (<br>(                                  |     |                |         |                                       |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | (<br>(     | 1 1                  |
| i.       | i i      |   | i.           |        | i.                                      |     |                |         | i i                                   |   |                                       | i.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | i.         | i i                  |
| . I      | 1        |   | 1<br>1       | l<br>L | 1<br>1                                  |     | l<br>L         |         |                                       |   | l<br>I                                | 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 1<br>1     | 1 I<br>1             |
|          | !        |   | <br>         |        |                                         |     |                | <br>    |                                       |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |            |                      |
| i.       | i i      |   | i.           |        | i.                                      |     |                |         |                                       |   |                                       | i.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | i.         | i -                  |
| . I      | 1        | 1 | l<br>I       | l<br>I | l<br>I                                  |     | l<br>I         |         |                                       |   | 1                                     | l<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | l<br>I     | 1 I<br>1             |
|          |          |   | <br><u>+</u> |        |                                         |     | <u></u>        | <br>    | '                                     |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |            | <u> </u>             |
| 1        | 1        |   | 1            | 1      | 1                                       |     | 1              |         |                                       |   |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1          |                      |
| 1        | 1        |   | 1            | r<br>L | 1                                       |     | r<br>L         |         |                                       |   |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1          | 1 I                  |
|          |          | L | <br>L        | !<br>! | !                                       | !   |                | <br>    | L  <br>                               |   |                                       | !<br>!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L              | !<br>!     | ) ]<br>              |
| 1        | 1        |   | i<br>I       | l<br>I | i<br>I                                  |     | l<br>I         |         | ( )<br>( )                            |   |                                       | i<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | i<br>i     | 1                    |
| 1        | 1        |   | 1            | r.     | 1                                       |     | r.             |         |                                       |   | i                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1          |                      |
| ·        |          |   | <br>+        | <br>   | <br>                                    | H = | ⊢ – – – –<br>I | <br>    | F = 1<br>I I                          |   | -  -  -  -  -<br>                     | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ⊢ – – – –<br>I | (<br>(     | 1 1<br>1             |
| 1        | 1        | 1 | i<br>I       | r<br>F | i<br>I                                  |     | r<br>F         |         |                                       |   |                                       | i<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | i<br>I     | 1 I                  |
|          |          |   | <br> <br>    |        |                                         |     |                | <br>    |                                       |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | !<br>      | · · · · · ·          |
| i.       |          |   | i T          |        |                                         |     |                |         |                                       | _ |                                       | n in the second se |                |            | · 1                  |
| 1<br>. 1 | 1        |   | l<br>L       | l<br>L | l<br>L                                  |     | l<br>L         |         |                                       |   |                                       | l<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | l<br>L     | 1 I                  |
|          |          |   | <br><u>+</u> |        | !                                       |     |                | <br>    | !                                     |   |                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |            | <u>  </u>            |
| i i      |          |   |              |        |                                         |     |                |         |                                       |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |            |                      |
| . I      | 1        | 1 | l<br>I       | l<br>I | l<br>I                                  |     | l<br>I         |         |                                       |   | 1                                     | l<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | l<br>I     | 1 I<br>1             |
|          |          |   | <br>L        |        | (                                       |     | L              | <br>    | L !                                   |   |                                       | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L              | (<br>      | ) J<br>1             |
| , i      | ,<br>I   |   |              |        |                                         |     |                |         | i i                                   |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |            | i i                  |
| 1        | 1        |   | l<br>I       | l<br>I | l<br>I                                  |     | l<br>I         |         |                                       |   |                                       | l<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | l<br>I     | i i<br>I             |
| ·  -<br> |          |   | <br>+        | 1<br>1 | I<br>I                                  | •   | ⊢ – – – –<br>I | <br>  4 | F I<br>I I I                          |   | <br>                                  | 4<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ⊢ – – – –<br>I | 1<br>1     | 4 4<br>1             |
| 1        | 1        |   | 1            | 1      | 1                                       |     | 1              |         |                                       |   |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1          | 1                    |
|          | 1        |   | i<br>I       | i<br>I | i<br>I                                  |     | i<br>I         |         | · ·                                   |   |                                       | i<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | i<br>I     |                      |
| . I      | 1        | 1 | l<br>I       | l<br>I | l<br>I                                  |     | l<br>I         |         |                                       |   | 1                                     | l<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | l<br>I     | 1 I<br>1             |
| 1<br>1   | 1        |   | 1<br>1       | r<br>F | 1<br>1                                  |     | r<br>F         |         |                                       |   |                                       | 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 1<br>1     | 1 I                  |
|          | !        |   | <br><u>+</u> |        |                                         |     |                | <br>    | !                                     |   |                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |            | 1 1                  |
| i i      | i i      |   |              |        |                                         |     |                |         | i i                                   |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |            | i i                  |
| . I      | 1        |   | 1<br>1       | l<br>L | 1<br>1                                  |     | l<br>L         |         |                                       |   | l<br>I                                | 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 1<br>1     | 1 I<br>1             |
|          |          |   | <br>L        |        |                                         |     |                | <br>    |                                       |   |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L              |            | ) ]<br>1             |
| i.       | , i      |   | 1            |        | 1                                       |     |                |         |                                       |   |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1          | i -                  |
| 1        | 1        |   | r<br>L       | r<br>F | 1<br>1                                  |     | r<br>F         |         |                                       |   | 1                                     | r<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | r<br>F     | 1 I                  |
| ·        |          |   | <br>+<br>I   | 1<br>1 | (                                       |     | ⊢ – – – –<br>I | <br>    | I<br>I I I                            |   | -  -  -  -  -<br>                     | +<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ⊢<br>'         | (<br>(     | 1 -  -  -  -  4<br>1 |
| 1        | 1        |   | 1            | 1<br>1 | I<br>I<br>I                             |     | н.             |         |                                       |   |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1<br>1     | 1                    |
|          |          |   | 1            |        | i<br>I                                  |     |                |         |                                       |   |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1          |                      |
|          |          |   | 1            | 1      | ( -  -  -  -  -<br>)                    |     | 1              |         |                                       |   |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |            |                      |
|          | 1        |   | 1            | l<br>I | 1                                       |     | l<br>I         |         |                                       |   |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1          | 1 I                  |
|          | '        |   | <br><u>-</u> |        | !                                       |     |                | <br>    |                                       |   |                                       | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |            | :'                   |
| 1        | 1        |   | i<br>L       | n<br>L |                                         |     | n<br>L         |         |                                       |   |                                       | i<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | i<br>L     |                      |
| 1<br>    | 1        |   | 1<br>1       | l<br>L | 1<br>1                                  |     | l<br>L         |         |                                       |   | 1                                     | 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | i<br>I     | 1 I                  |
|          |          |   |              |        |                                         |     |                |         |                                       |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |            |                      |
| 1        | 1        |   |              | I      | I<br>I<br>I                             |     | I              |         |                                       |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |            |                      |
| 1<br>. 1 | 1        |   | l<br>L       | l<br>L | 1<br>1                                  |     | l<br>L         |         |                                       |   |                                       | l<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | l<br>L     | 1 I                  |
|          |          |   | <br>+        |        | ( -  -  -  -  -  -  -  -  -  -  -  -  - |     |                | <br>    | F I                                   |   |                                       | 4 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            | 4 4<br>1             |
| 1        | 1        |   | 1            | I      | 1                                       |     | I              |         |                                       |   | I                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1          | . I                  |
| 1<br>. 1 | 1        |   | l<br>L       | l<br>L | i<br>i<br>i<br>i                        |     | l<br>L         |         |                                       |   |                                       | l<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | l<br>L     | i i<br>I             |
| ·        | ;        |   | <br>г<br>I   | 1      | 1 -  -  -  -  -<br>1                    | r   | с<br>I         | <br>    | r <sub>1</sub>                        |   |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |            | 1                    |
| 1        | 1        |   | 1            | I      |                                         |     | I              |         |                                       |   | I                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1          | . I                  |
| 1        | <br>     |   | <br>1<br>1   | l<br>I | (<br>(                                  |     |                |         |                                       |   | l<br>                                 | 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | (<br>(     | 1 1<br>1_            |
|          |          |   | <br>         | ,<br>, | ,<br>,                                  |     |                | <br>    |                                       |   |                                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | ,<br>,     | 1 i<br>1             |
| , i      |          |   | 1            | i.     | <br> <br> <br>                          |     | i.             |         | , i                                   |   |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1          |                      |
|          |          |   | 1            | 1.     | 1                                       |     | ·              |         | · · · · · · · · · · · · · · · · · · · |   | · · · · · · · · · · · · · · · · · · · | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1          | 1                    |
|          |          |   | <br>         |        |                                         |     |                | <br>    | '                                     |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |            |                      |
|          |          |   | <br>         | ·      |                                         |     |                | <br>    |                                       |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |            | /<br> <br>  .        |
|          |          |   | <br>         | ·      |                                         |     |                | <br>    |                                       |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | <br>-<br>- | i i<br>i i           |

## Square Size Proximity Sensors

TL-N

A Variety of Models Available for a Wide Range of Applications



## **Ordering Information**

Sensors

DC 2-wire

|            |                  |   |     |      | Model            |           |  |  |  |
|------------|------------------|---|-----|------|------------------|-----------|--|--|--|
| Sha        | Shape Sensing di |   |     |      | Operating status |           |  |  |  |
|            |                  |   |     |      | NO               | NC        |  |  |  |
| Unshielded | □25              | 7 | 7mm |      | TL-N7MD1         | TL-N7MD2  |  |  |  |
|            | □30              |   | 12m | m    | TL-N12MD1        | TL-N12MD2 |  |  |  |
|            | □40              |   |     | 20mm | TL-N20MD1        | TL-N20MD2 |  |  |  |

Note: Models with different response frequency are available. These model numbers take the form TL-NDDD (e.g., TL-N5ME15)

## DC 3-wire and AC 2-wire Models

|            |            |                |          |         |                       | Model                                        |                                     |                    |                    |
|------------|------------|----------------|----------|---------|-----------------------|----------------------------------------------|-------------------------------------|--------------------|--------------------|
| Sha        | ре         | Se             | nsing di | istance | Output specifications | Operatir                                     | ng status                           |                    |                    |
|            |            |                |          |         |                       | NO                                           | NC                                  |                    |                    |
|            | □25        | 5m             | m        |         | DC 3-wire NPN         | <b>TL-N5ME1</b> <sup>*1</sup><br>*2          | <b>TL-N5ME2</b> <sup>*1</sup><br>*2 |                    |                    |
|            | ⊔z5        |                |          |         | AC 2-wire Models      | TL-N5MY1                                     | TL-N5MY2                            |                    |                    |
| Unshielded | □30        | 0 <b>1</b> 0mr |          |         | 10                    |                                              | DC 3-wire NPN                       | *1<br>TL-N10ME1 *2 | *1<br>TL-N10ME2 *2 |
|            |            |                |          |         | TOMM                  |                                              | AC 2-wire Models                    | TL-N10MY1          | TL-N10MY2          |
|            | □40        |                |          | 20mm    | DC 3-wire NPN         | <b>TL-N20ME1</b> <sup>*1</sup> <sub>*2</sub> | TL-N20ME2 *2                        |                    |                    |
|            | <b>□+0</b> |                |          | 20mm    | AC 2-wire Models      | TL-N20MY1                                    | TL-N20MY2                           |                    |                    |

\*1. Each of these models has a cord with a standard length of 5 m.

\*2. Each of these models with a robot cord is available and classified with the suffix "R" added to the model number (e.g., TL-N5ME1-R).

#### Accessories (Order Separately) Mounting Brackets

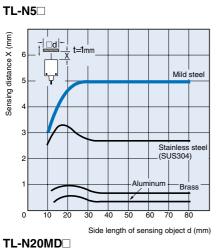
|                        |             | Applicable models                                     |                     |  |  |  |  |
|------------------------|-------------|-------------------------------------------------------|---------------------|--|--|--|--|
| ltem                   | Model       | The Mounting Bracket is<br>provided with this models. | Order separately    |  |  |  |  |
|                        | Y92E-C5     | TL-N5ME□, TL-N7MD□                                    | TL-N5MY             |  |  |  |  |
| Mounting<br>Brackets   | Y92E-C10    | TL-N10ME , TL-N12MD                                   | TL-N10MY            |  |  |  |  |
| 21001010               | Y92E-C20    | TL-N20ME , TL-N20MD                                   | TL-N20MY            |  |  |  |  |
| Mounting               | Y92E-N5C15  |                                                       | TL-N5ME□, TL-N5MY□  |  |  |  |  |
| Bracket for<br>Conduit | Y92E-N10C15 |                                                       | TL-N10ME , TL-N10MY |  |  |  |  |

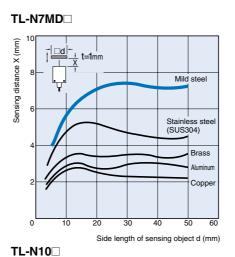
## **Rating/Performance**

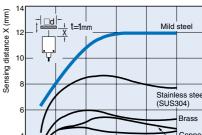
## DC 2-wire

| Item                                                       | Model                       | TL-N7MD                                                                                                                   | TL-N12MD                                            | TL-N20MD                                          |  |  |
|------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|--|--|
| Sensing distance                                           |                             | 7 mm ±10%                                                                                                                 | 12 mm ±10%                                          | 20 mm ±10%                                        |  |  |
| Setting distance                                           |                             | 0 to 5.6 mm                                                                                                               | 0 to 9.6 mm                                         | 0 to 16 mm                                        |  |  |
| Differential distance                                      |                             | 10% max.                                                                                                                  |                                                     |                                                   |  |  |
| Sensir                                                     | ng object                   | Ferrous metal(Sensitivity decreases w                                                                                     | ith non-ferrous metals)                             |                                                   |  |  |
| Standard sensing object                                    |                             | Iron, 30 x 30 x 1 mm                                                                                                      | iron, 40 x 40 x 1 mm                                | iron, 50 x 50 x 1 mm                              |  |  |
| Respor                                                     | nse frequency               | 0.5 kHz                                                                                                                   |                                                     | 0.3 kHz                                           |  |  |
| (Opera                                                     | supply<br>ating<br>e range) | 12 to 24 VDC (10 to 30 VDC), ripple (                                                                                     | p-p): 10% max.                                      |                                                   |  |  |
| Leaka                                                      | ge current                  | 0.8 mA max.                                                                                                               |                                                     |                                                   |  |  |
| output                                                     | Switching capacity          | 3 to 100 mA                                                                                                               |                                                     |                                                   |  |  |
| Control output                                             | Residual<br>voltage         | 3.3 V max. (Load current 100 mA, Cal                                                                                      | 3.3 V max. (Load current 100 mA, Cable length: 2 m) |                                                   |  |  |
| Indica                                                     | tor lamp                    | D1 models: Operation indicator (red LED), Operation set indicator (green LED)<br>D2 models: Operation indicator (red LED) |                                                     |                                                   |  |  |
| Operating status<br>(with sensing ob-<br>ject approaching) |                             | D1 models: NO<br>D2 models: NC                                                                                            |                                                     |                                                   |  |  |
| Protective circuits                                        |                             | Surge absorber, short-circuit protection                                                                                  |                                                     |                                                   |  |  |
| Ambien                                                     | t temperature               | Operating/Storage: -25°C to 70°C (with no icing or condensation)                                                          |                                                     |                                                   |  |  |
| Ambie                                                      | nt humidity                 | Operating/Storage: 35% to 95%RH                                                                                           |                                                     |                                                   |  |  |
| Temper                                                     | ature influence             | $\pm 10\%$ max. sensing distance at 23°C within the temperature range of -25°C and 70°C                                   |                                                     |                                                   |  |  |
| Voltag                                                     | e influence                 | ±2.5% max. sensing distance within rated voltage range ±15%.                                                              |                                                     |                                                   |  |  |
| Insula<br>resista                                          |                             | 50 M $\Omega$ min. (at 500 VDC) between energized parts and case                                                          |                                                     |                                                   |  |  |
| Dielec                                                     | tric strength               | 1,000 VAC for 1 min between energized parts and case                                                                      |                                                     |                                                   |  |  |
| Vibratio                                                   | on resistance               | 10 to 55 Hz, 1.5 mm double amplitude for 2 hours each in X, Y, and Z directions                                           |                                                     |                                                   |  |  |
| Shock                                                      | resistance                  | Destruction: 1,000 m/s <sup>2</sup> for 10 times each in X, Y, and Z directions                                           |                                                     |                                                   |  |  |
|                                                            | ive structure               | IEC60529 IP67                                                                                                             |                                                     |                                                   |  |  |
|                                                            |                             | Pre-wired models (standard length: 2                                                                                      | m)                                                  |                                                   |  |  |
| Weigh<br>(Packe                                            | ed state)                   | Approx. 145 g                                                                                                             | Approx. 170 g                                       | Approx. 240 g                                     |  |  |
| Ma-<br>terial                                              | Case<br>Sensing<br>surface  | Heat-resistant ABS resin                                                                                                  |                                                     |                                                   |  |  |
| Acces                                                      | sories                      | Mounting bracket, instruction manual                                                                                      |                                                     |                                                   |  |  |
| * The re                                                   | snonse freque               | ncies for DC switching are average values mea                                                                             | sured under the condition that the distance betw    | veen each sensing object is twice as large as the |  |  |

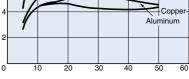
\* The response frequencies for DC switching are average values measured under the condition that the distance between each sensing object is twice as large as the size of the sensing object and the sensing distance set is half of the maximum sensing distance.


#### DC 3-wire and AC 2-wire Models

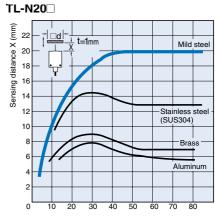

| 50 5-1                                                     |                                     | 2-wire Models                                                                                                                                                                                   |                                   | I                   |  |  |
|------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------|--|--|
| Item                                                       | Model                               | TL-N5ME□, TL-N5MY□                                                                                                                                                                              | TL-N10ME , TL-N10MY               | TL-N20ME , TL-N20MY |  |  |
| Sensing distance                                           |                                     | 5 mm ±10%                                                                                                                                                                                       | 10 mm ±10%                        | 20 mm ±10%          |  |  |
| Setting distance                                           |                                     | 0 to 4 mm                                                                                                                                                                                       | 0 to 8 mm                         | 0 to 16 mm          |  |  |
| Differential dis-<br>tance                                 |                                     | 15% max. of sensing distance                                                                                                                                                                    |                                   |                     |  |  |
| Sensi                                                      | ng object                           | Ferrous metal (Sensitivity decreases v                                                                                                                                                          | vith non-ferrous metals)          | 1                   |  |  |
|                                                            | ard sensing<br>(mild steel)         | 30 x 30 x 1 mm                                                                                                                                                                                  | 40 x 40 x 1 mm                    | 50 x 50 x 1 mm      |  |  |
| Respo<br>freque                                            |                                     | E models: 500Hz<br>Y models: 10 Hz                                                                                                                                                              | E models: 40Hz<br>Y models: 10 Hz |                     |  |  |
|                                                            | y voltage*2<br>ating volt-<br>ange) | E models: 12 to 24 VDC (10 to 30 VDC<br>Y models: 100 to 220 VAC (90 to 250                                                                                                                     |                                   |                     |  |  |
| Currei<br>consu                                            | nt<br>mption                        | E models: 8 mA max. at 12 VDC, 15 n                                                                                                                                                             | nA max. at 24 VDC                 |                     |  |  |
| Leaka                                                      | ge current                          | Y models: Refer to the Specifications                                                                                                                                                           |                                   |                     |  |  |
| output                                                     | Switching capacity                  | E models: 100 mA max. at 12VDC, an<br>Y models: 10 to 200 mA                                                                                                                                    | d 200 mA max. at 24 VDC           |                     |  |  |
| Control output                                             | Residual<br>voltage                 | Le models: 1 V max with a current of 200 mA                                                                                                                                                     |                                   |                     |  |  |
| Indica                                                     | tor lamp                            | E models: Detection indicator (red LED)<br>Y models: Operation Indicator (red LED)                                                                                                              |                                   |                     |  |  |
| Operating status<br>(with sensing ob-<br>ject approaching) |                                     | E1, Y1 models: NO<br>E2, Y2 models: NC                                                                                                                                                          |                                   |                     |  |  |
| Protec<br>circuit                                          |                                     | E models: Reverse connection protection and surge absorber<br>Y models: Surge absorber                                                                                                          |                                   |                     |  |  |
| Ambie<br>tempe                                             |                                     | Operating/Storage: -25°C to 70°C (with no icing or condensation)                                                                                                                                |                                   |                     |  |  |
|                                                            | ent humidity                        | Operating/Storage: 35% to 95%RH (with no condensation)                                                                                                                                          |                                   |                     |  |  |
| Tempo<br>influer                                           | erature<br>nce                      | $\pm 10\%$ max. sensing distance at 23°C within a temperature range of -25°C and 70°C                                                                                                           |                                   |                     |  |  |
| Voltag                                                     | je influence                        | E models: $\pm 2.5\%$ max. sensing distance within a range of $\pm 10\%$ of rated supply voltage Y models: $\pm 1\%$ max. sensing distance within a range of $\pm 10\%$ of rated supply voltage |                                   |                     |  |  |
| Insula<br>resista                                          |                                     | 50 M $\Omega$ min. (at 500 VDC) between energized parts and case                                                                                                                                |                                   |                     |  |  |
| Dielec                                                     | tric strength                       | E models: 1,000 VAC, 50/60 Hz for 1 min between energized parts and case<br>Y models: 2,000 VAC, 50/60 Hz for 1 min between energized parts and case                                            |                                   |                     |  |  |
| Vibrat<br>resista                                          |                                     | 10 to 55 Hz, 1.5 mm double amplitude for 2 hours each in X, Y, and Z directions                                                                                                                 |                                   |                     |  |  |
| Shock                                                      | resistance                          | Destruction: 500 m/s <sup>2</sup> for 10 times each in X, Y, and Z directions                                                                                                                   |                                   |                     |  |  |
| Proteo<br>structu                                          |                                     | IEC60529 IP67                                                                                                                                                                                   |                                   |                     |  |  |
| Conne<br>metho                                             |                                     | Pre-wired models (standard length: 2                                                                                                                                                            | m)                                |                     |  |  |
| Weigh<br>(Pack                                             | it<br>ed state)                     | Approx. 145 g                                                                                                                                                                                   | Approx. 170 g                     | Approx. 240 g       |  |  |
| Ma-<br>terial                                              | Case<br>Sensing<br>surface          | Heat-resistant ABS resin                                                                                                                                                                        | ·                                 | ·                   |  |  |
| Acces                                                      | sories                              | E models: Mounting bracket, instruction                                                                                                                                                         | on manual                         |                     |  |  |
|                                                            |                                     | E models. Modifung bracket, instruction manual                                                                                                                                                  |                                   |                     |  |  |


\*1. The response frequencies for DC switching are average values measured under the condition that the distance between each sensing object is twice as large as the size of the sensing object and the sensing distance set is half of the maximum sensing distance.
\*2. The E models (DC switching type) can be used with a full-wave rectification power of 24 VDC ±10%.

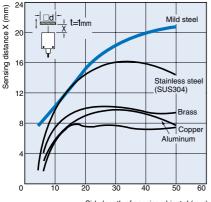
## Characteristic data (typical)


#### Sensing Distance vs. Sensing Object

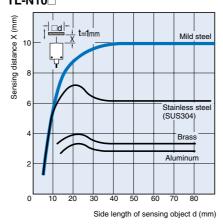








TL-N12MD



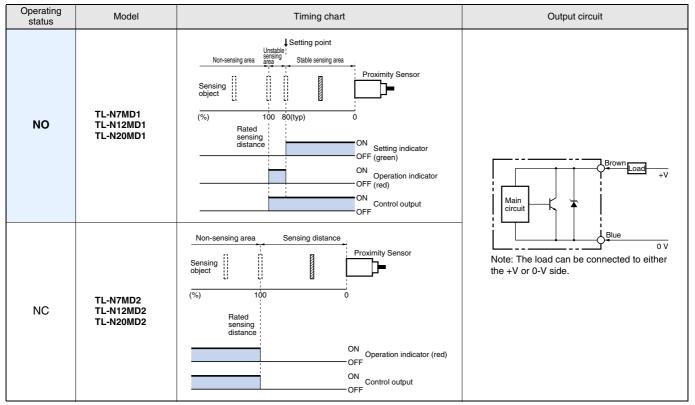

Side length of sensing object d (mm)



Side length of sensing object d (mm)



Side length of sensing object d (mm)




TL-N

E-63

## **Output Circuit Diagram**

### DC 2-wire Models



#### DC 3-wire Models



#### AC 2-wire Models

| Operating<br>status | Model                              | Timing chart                                                                                        | Output circuit  |
|---------------------|------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------|
| NO                  | TL-N5MY1<br>TL-N10MY1<br>TL-N20MY1 | Sensing object Sensing object Ves No Operation Operation indicator (red) OFF Ves No OFF OFF OFF OFF | Main<br>circuit |
| NC                  | TL-N5MY2<br>TL-N10MY2<br>TL-N20MY2 | Sensing object<br>Load<br>Operation indicator (red)<br>OFF                                          |                 |

## **Precautions**

∧ Warning

Do not short-circuit the load, otherwise the

TL-N may explode or burn.



Do not supply power to TL-N without load, otherwise TL-N may be damaged (AC 2-wire Models).

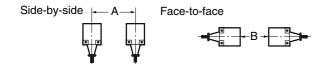
Correct Use

#### Design

#### Effects of Surrounding Metal

Provide a minimum distance between the Sensor and the surrounding metal as shown in the table below.




Effects of Surrounding Metal(Unit: mm)

| Model               | Length | A (see<br>note) | B (see<br>note) |
|---------------------|--------|-----------------|-----------------|
| TL-N7MD             |        | 40              | 35              |
| TL-N12MD            |        | 50              | 40              |
| TL-N20MD            |        | 70              | 60              |
| TL-N5ME□, TL-N5MY□  |        | 20              | 23              |
| TL-N10ME , TL-N10MY |        | 40              | 30              |
| TL-N20ME , TL-N20MY |        | 80              | 45              |

\* The figures are applicable for one metal object, otherwise the figure must be multiplied by the number of metal objects.

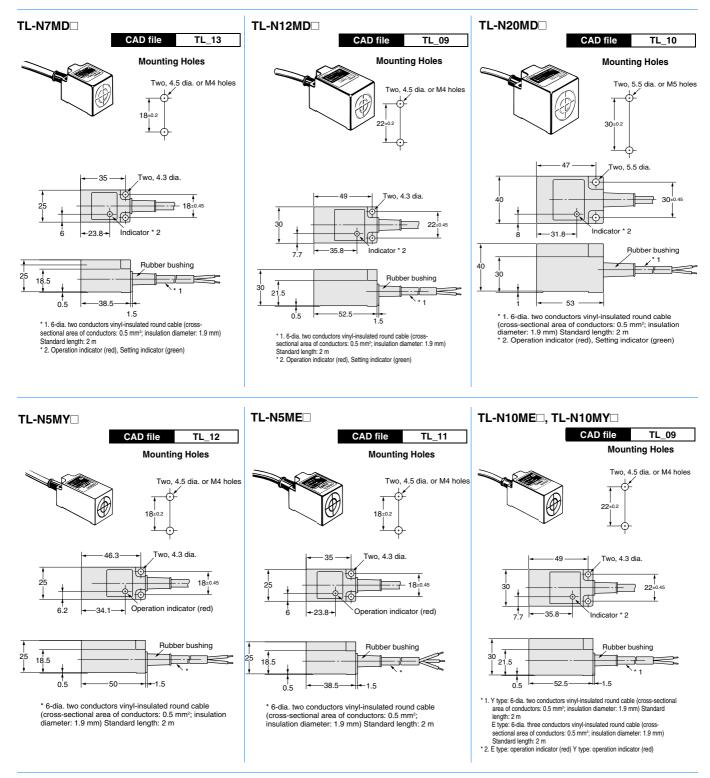
#### **Mutual Interference**

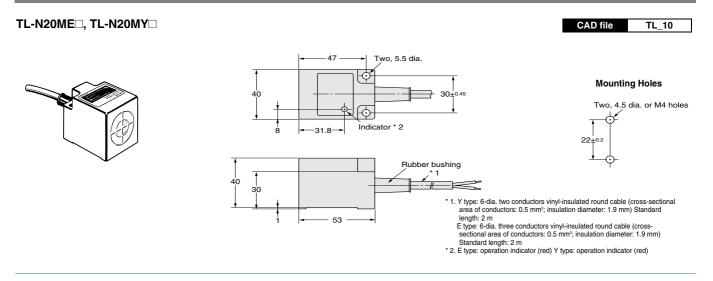
If more than one Sensor is located face to face or in parallel, ensure to maintain enough space between adjacent Sensors to suppress mutual interference as provided in the following diagram.



Mutual Interference (unit: mm)

| Model               | Length | А        | В        |
|---------------------|--------|----------|----------|
| TL-N7MD             |        | 100(50)  | 120(60)  |
| TL-N12MD            |        | 120(60)  | 200(100) |
| TL-N20MD            |        | 200(100) | 200(100) |
| TL-N5ME             |        | 80(40)   | 80(40)   |
| TL-N5MY             |        | 80(40)   | 90(40)   |
| TL-N10ME , TL-N10MY |        | 120(60)  | 120(60)  |
| TL-N20ME , TL-N20MY |        | 200(100) | 120(60)  |


Note: Figures in parentheses will apply if the Sensors in use are different from each other in response frequency.


#### Mounting

Ensure that each screw is tightened with a torque within a range of 0.9 to 1.5 Nm.

## **Dimensions (Unit: mm)**

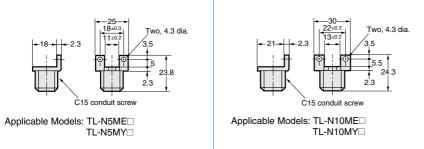
#### Sensors





#### Accessories (Order Separately) Mounting Brackets




\*1. The numeric values are Mounting Bracket Holes dimensions.

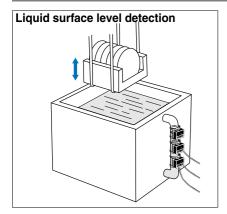
\*2. Supplied with the product.

#### Mounting Bracket for Conduit

#### Y92E-N5C15








# Liquid Level Sensor

- Installation on pipes.
- Sensing by means electrostatic capacity and is not influenced by the color of the pipe or liquid.
- Available in 8 to 11 mm dia. and 12 to 26 mm dia. models to enable sensing for a wide range of pipe diameters.
- Built-in amplifier for space-saving.



## **Applications**



## **Ordering Information**

| Sensor type     | Applicable pipe diameters | Shape | Output form               |    | Model      |
|-----------------|---------------------------|-------|---------------------------|----|------------|
| Electrostatic   | 8 to 11 mm dia.           |       | Τ                         |    | E2K-L13MC1 |
| capacity method | 12 to 26 mm dia.          |       | NPN open-collector output | NO | E2K-L26MC1 |

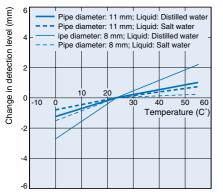
## **Rating/Performance**

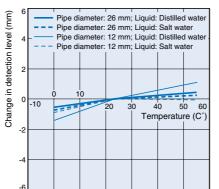
| Item                                                             |                  | Model             | E2K-L13MC1                                                                                                                                                                        | E2K-L26MC1       |  |
|------------------------------------------------------------------|------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
| Material                                                         |                  | ial               | Non-metal                                                                                                                                                                         |                  |  |
| Applicable pipes                                                 | Size             | External diameter | 8 to 11 mm dia.                                                                                                                                                                   | 12 to 26 mm dia. |  |
|                                                                  | Size             | Wall<br>thickness | 1 mm max.                                                                                                                                                                         | 1.5 mm max.      |  |
| Sensing object                                                   |                  |                   | Liquid (see note)                                                                                                                                                                 |                  |  |
| Repetition precisi                                               | on               |                   | ±0.2 mm max.                                                                                                                                                                      |                  |  |
| Response difference<br>(reference value of<br>with pipe size and | only; va         |                   | 0.6 to 5 mm                                                                                                                                                                       | 0.3 to 3 mm      |  |
| Supply voltage<br>(operating voltage                             | e range          | e)                | 12 to 24 VDC, 10% max. ripple (10.8 to 30 VDC)                                                                                                                                    |                  |  |
| Current consump                                                  | tion             |                   | 12 mA max.                                                                                                                                                                        |                  |  |
| Control output                                                   | Switcl<br>capac  | 0                 | 100 mA max.                                                                                                                                                                       |                  |  |
| Control output                                                   | Residual voltage |                   | 1 V max. (under load current of 100 mA with cable length of 2 m)                                                                                                                  |                  |  |
| Detection position                                               | n of liqu        | uid surface       | Notch position (For details, refer to Sensitivity Adjustment on next page.)                                                                                                       |                  |  |
| Indicator lamp                                                   |                  |                   | Operation indicator (orange)                                                                                                                                                      |                  |  |
| Ambient tempera                                                  | ture             |                   | Operating: 0 to 55°C; Storage: -10 to 65°C (with no icing or condensation)                                                                                                        |                  |  |
| Ambient humidity                                                 |                  |                   | Operating/storage: 25% to 85% (with no condensation)                                                                                                                              |                  |  |
| Temperature influ                                                | ience            |                   | In the range 0 to 55°C: Detection level at 23°C 4 mm (with distilled water or 20 % salt water concentration) (±6 mm with E2K-L13MC1 for distilled water in pipe of 8 mm diameter) |                  |  |
| Voltage influence                                                |                  |                   | At the rated power supply voltage ±10%: Detection level at rated supply voltage ±0.5 mm                                                                                           |                  |  |
| Insulation resista                                               | nce              |                   | 50 M $\Omega$ min. (at 500 VDC) between energized parts and case                                                                                                                  |                  |  |
| Dielectric strengt                                               | n                |                   | 500 VAC 50/60 Hz for 1 min between energized part and case                                                                                                                        |                  |  |
| Vibration resistan                                               | ice              |                   | 10 to 55 Hz, 1.5 mm double amplitude for 2 hours each in X, Y, and Z directions                                                                                                   |                  |  |
| Shock resistance                                                 |                  |                   | 500 m/s <sup>2</sup> for 3 times each in X, Y, and Z directions                                                                                                                   |                  |  |
| Protective structure                                             |                  |                   | IEC 60529 IP66                                                                                                                                                                    |                  |  |
| Connection meth                                                  | od               |                   | Pre-wired models (standard length: 2 m)                                                                                                                                           |                  |  |
| Weight (Packed s                                                 | state)           |                   | Approx. 70 g                                                                                                                                                                      |                  |  |
| Material                                                         | Case,            | cover             | Heat-resistant ABS resin                                                                                                                                                          |                  |  |
|                                                                  | Cable            | clamp             | NBR                                                                                                                                                                               |                  |  |
| Accessories                                                      |                  |                   | 2 binding bands, 4 nonskid tubes, instruction manual                                                                                                                              |                  |  |

Note: In the following cases, stable detection may not be possible and ensure to confirm correct operation in the actual installation before use.

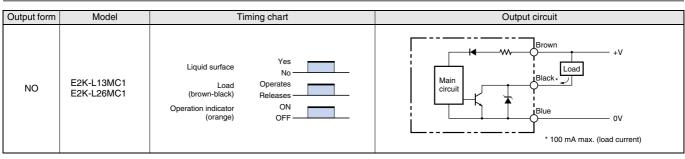
If the dielectric constant or conductivity of the liquid is low.

If the capacity of the liquid is small, or if the pipe diameter is so small or the pipe walls are so thick that the amount by which the capacity changes relating to the liquid level is small.


3. In case of an increased gassing or a highly viscous liquid firm residue on the inside walls of the pipe, or a dirt clogging on the inner or outer walls of the pipe.


## Characteristic data (typical)

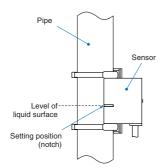
#### Influence of Temperature on Detection Level


#### E2K-L13MC1





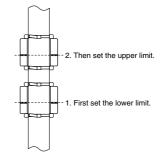



## **Output Circuit Diagram**



## Operation

#### Sensitivity adjustment


1. Install the Sensor with the setting position (notch) in line with the liquid level to be detected.

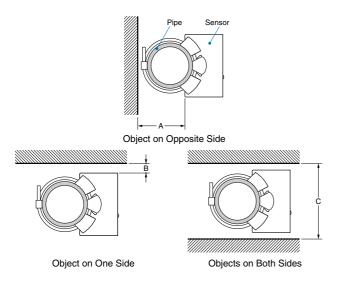


2. After Sensor installation adjust the detecting sensitivity using the (12-step) sensitivity adjuster in the way shown below.

| Status of the<br>indicator when<br>the liquid level<br>is aligned with<br>the setting position | Sensitvity adjuster | Adjustment procedure                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Not lit                                                                                        |                     | Turn the sensitivity adjuster clockwise using a screwdriver until the indicator lights.                                                                                                                |
| Lit                                                                                            |                     | Turn the sensitivity adjuster<br>counterclockwise using a<br>screwdriver until the indicator<br>turns OFF. Then, turn the<br>sensitivity adjuster clockwise<br>until the indicator lights up<br>again. |

- Note: 1 . During sensitivity adjustment do not put your hand on the Sensor and
  - and the sensitivity adjustment to not put your hand on the sensor and make sure that the cable is properly secured. Failure to observe these points may affect the detection level.
    When using more than one Sensor (e.g., to detect for upper and lower limits), adjust the sensitivity of the Sensors in order starting from the bottom. Adjusting the sensitivity of a Sensor may affect the detection level of the Sensor above. level of the Sensor above it.




## Precautions

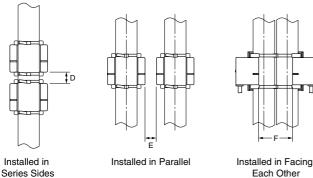
Correct Use

#### Design

#### Influence of Surrounding Objects

Performance may be adversely affected by conductive objects (e.g., metals) in the vicinity of the Sensor. Ensure that any conductive objects are separated from the Sensor and set at a minimum distance as shown below.




Influence of Surrounding Objects (Units: mm)

| Shape      | Length | А  | В | С  |
|------------|--------|----|---|----|
| E2K-L13MC1 |        | 25 | 5 | 45 |
| E2K-L      | 26MC1  | 25 | 0 | 40 |

#### **Mutual Interference**

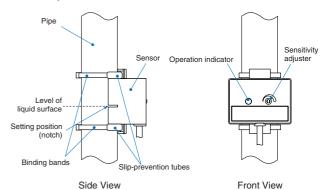
Mutual Interference

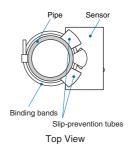
When installing 2 or more Sensors in series, in parallel, or facing each other, be sure that they are separated by at least the distances shown below.



(Unit: mm)

| Shape      | Length | D (see note) | E  | F  |
|------------|--------|--------------|----|----|
| E2K-L13MC1 |        | 10           | 10 | 25 |
| E2K-L26MC1 |        | 10           | 10 | 30 |


The detection level for the top Sensor may change when the detection level for the bottom Sensor is set. Be sure to set the detection level for the bottom Sensor first.


#### Installation

#### Sensor installation

Attach the Sensor securely to the pipe using the 2 binding bands and the 4 nonskid tubes provided (2 tubes per band) in the way shown below.

Install the Sensor in such manner that the pipe is in contact with the entire sensing face of the Sensor with the pipe and Sensor in parallel.







#### **Power Supply**

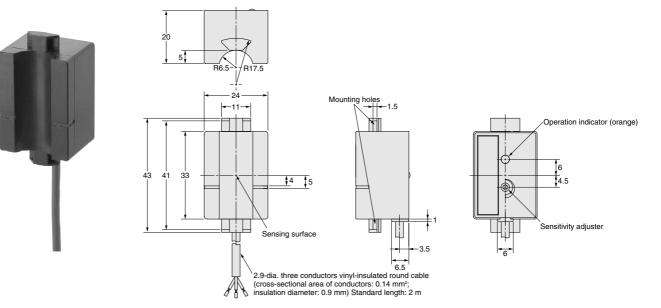
If separate power supplies are used for Sensor and load, be sure to turn on the Sensor power supply first.

If a commercially available switching regulator is used, the Sensor may malfunction because of switching noise. Connect the frame ground and ground terminals to ground.

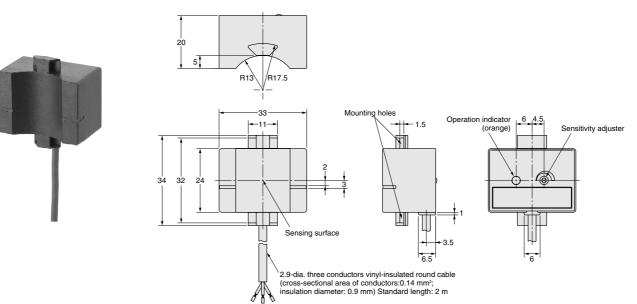
#### Operating Environment

#### **Ambient Conditions**

Although this product has waterproof specifications, do not use it in locations where it may have a direct contact with liquids (e.g., water or cutting oil). Such locations can interfere with the electrostatic capacity method used by the Sensor.


Even if the Sensor is used within the specified temperature range, do not subject it to sudden changes in temperature because this will shorten the service life.

#### Miscellaneous


Drift may occur when the power supply is turned ON. If the dielectric constant of the liquid is low, the detection level of the liquid may be 2 to 3 mm higher than the set level for approximately 20 minutes after power is turned ON.

## **Dimensions (Unit: mm)**

## E2K-L13MC1



E2K-L26MC1



## MEMO

|              | <u> </u>         |                  | <br>                      |                     |                                     |                                       |                                            |                                       |                | ,                |                  |                                         |                                         |                                         |        |        |
|--------------|------------------|------------------|---------------------------|---------------------|-------------------------------------|---------------------------------------|--------------------------------------------|---------------------------------------|----------------|------------------|------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------|--------|
| 1            | 1                | 1                | 1                         | 1                   | i i                                 | 1                                     | i i                                        | i i                                   | 1              |                  | 1                |                                         | і і<br>і                                |                                         | 1      | 1      |
|              |                  |                  |                           |                     | i i                                 | i i                                   | i i                                        | i i                                   |                |                  | n i              |                                         | 0                                       |                                         | 0      |        |
|              |                  | י<br>ר           | <br>                      |                     | <del>-</del>                        | i ¦                                   |                                            |                                       | 1              | ¦                |                  | י<br>ר ק                                | , <sup>'</sup>                          |                                         | ;      |        |
| 1            | 1                | 1                | 1<br>1                    | 1<br>1              | 1 1<br>1 1                          | 1<br>1                                | 1 1<br>1 2                                 | 1 1<br>1 2                            | 1              | . I              | 1                | 1<br>1                                  | с I<br>Г                                | l<br>I                                  | 1<br>1 | 1<br>1 |
| 1            |                  |                  | 1                         | 1                   | 1                                   |                                       | ( )                                        | ( )                                   |                |                  |                  |                                         | н на на<br>Н                            |                                         | 1      | 1      |
|              | '                |                  | <br><u>-</u>              | (                   |                                     | ; i                                   | i                                          |                                       |                |                  | e e e e e        |                                         | ; '                                     |                                         |        |        |
| 1            | 1                | 1                | 1<br>1                    | 1<br>1              | 1 1<br>1 1                          | 1<br>1                                | 1 I<br>1 I                                 | 1 I<br>1 I                            | 1              | . 1              | 1                | 1<br>1 1                                | . I                                     |                                         | 1<br>1 | l<br>I |
| 1            | 1                | 1                | 1                         | 1                   | 1 1                                 |                                       | i i                                        | i i                                   | 1              |                  | . 1              |                                         | н н<br>н                                |                                         | 1      | 1      |
|              | ;                |                  | <br>                      |                     |                                     |                                       | '                                          | <u>-</u>                              |                |                  |                  |                                         |                                         |                                         |        |        |
| 1            | 1                | 1                | l<br>I                    | l<br>I              | 1 1<br>1 1                          | 1<br>1                                | 1 1<br>1 1                                 | 1 1<br>1 1                            | 1              |                  | 1                | 1<br>1 1                                | . I                                     | l<br>I                                  | 1<br>1 | l<br>I |
| 1            |                  | ا<br>بر بر بر بر | <br>1                     | 1                   | 1 I                                 |                                       |                                            | i i                                   | 1              |                  | ا<br>            | ا<br>س ـ ـ ـ ـ ـ ا                      | · · · ·                                 |                                         | (<br>( | 1      |
| i            |                  | , i              | i.                        | i.                  | i i                                 | i i                                   | i i                                        | i i                                   |                |                  | n i              | i i                                     | 0                                       |                                         | 1      | i.     |
| 1            | 1                | 1                | i<br>I                    | i<br>I              | 1 I                                 | 1<br>1 1                              | . 1<br>1 1                                 | . 1<br>1 1                            | 1              | 1                |                  | 1<br>1 1                                |                                         |                                         | 1      | l<br>I |
| <sup>1</sup> |                  |                  | <br>·<br>                 |                     |                                     | , <sup>!</sup>                        | ,                                          | <br>                                  | ,              |                  |                  | ر<br>                                   | '                                       |                                         |        | 1      |
| 1            | 1                | 1                | 1                         | 1                   | 1 1                                 |                                       | i i                                        | i i                                   | 1              |                  | . 1              |                                         | н н<br>н                                |                                         | 1      | 1      |
|              |                  |                  |                           |                     | i i                                 | i i                                   | i i                                        | i i                                   |                |                  | i i              | i i                                     |                                         |                                         | 1      |        |
|              |                  |                  | <br>$\frac{1}{1}$ = = = = |                     | $\frac{1}{1} \frac{1}{1}$           | ; ;                                   |                                            |                                       | $ \frac{1}{2}$ |                  |                  |                                         | :'                                      |                                         |        |        |
| 1            | 1                | 1                | 1                         | 1                   | 1 I                                 | 1                                     | ( )<br>( )                                 | ( )<br>( )                            | 1              |                  | 1                | 1                                       | н — П<br>Г                              |                                         | i<br>I | 1      |
| 1            | 1                | 1                | 1                         | 1                   | ( )                                 |                                       | i i                                        | i i                                   | 1              |                  |                  |                                         | н                                       |                                         | 1      | 1      |
|              | '                | ل ـ ـ ـ ـ ـ ـ    | <br>L                     | 1                   |                                     |                                       | '                                          |                                       |                | · '              |                  | <sup>1</sup>                            | '                                       |                                         |        |        |
| 1            | 1                | 1                | 1<br>1                    | 1<br>1              | 1 1<br>1 1                          | 1<br>1                                | - 1<br>1                                   | - 1<br>1                              | 1              | . I              | 1                | 1<br>1 1                                | 1                                       |                                         | 1      | l<br>I |
|              |                  |                  |                           | <br>                |                                     |                                       |                                            |                                       |                |                  | ا<br>            |                                         |                                         |                                         |        |        |
|              | 1                |                  | <br>                      |                     | . = +                               | ·                                     | I<br>I I                                   |                                       | - +            | 1                |                  |                                         | · 1                                     |                                         |        |        |
| 1            | 1                | 1                | i<br>I                    | i<br>I              | i i<br>I i                          | 1<br>1 1                              | 1<br>1                                     | 1<br>1                                | 1              | 1                | , I              | 1<br>1 1                                | 1                                       | l<br>I                                  | 1      | i<br>I |
|              |                  |                  | <br>r                     |                     | $\frac{1}{1}$ = = = = $\frac{1}{T}$ | r ;                                   |                                            |                                       |                |                  | ا ـ ـ ـ ـ        | <mark>-</mark>                          | '                                       |                                         |        | 1      |
| 1            | 1                | 1                | 1                         | 1                   | ( )<br>                             | i I                                   | i i                                        | i i                                   | 1              |                  |                  | 1                                       | с с<br>Г                                |                                         | i<br>I | 1      |
| 1            |                  |                  | 1                         | 1                   | · · · · · ·                         |                                       |                                            |                                       |                |                  |                  |                                         |                                         |                                         | 1      | 1      |
| ;            |                  |                  | <br>$\frac{1}{1}$         |                     | $\frac{1}{1} \frac{1}{1}$           | ; <u> </u>                            |                                            |                                       |                | ·                | !                |                                         | ; '                                     |                                         |        |        |
| 1            | 1                | 1                | l<br>I                    | l<br>I              | 1 I<br>1 I                          | 1<br>1                                | 1                                          | 1                                     | 1              |                  | I.               | 1<br>1                                  | n i<br>L                                | l<br>I                                  | 1<br>1 | 1<br>1 |
| i            | , i              | , i              | 1                         | 1                   | į i                                 |                                       | i i                                        | i i                                   | , i            | i                |                  |                                         |                                         |                                         | 1      | 1      |
|              | '                | د ـ ـ ـ ـ ـ      | <br>                      |                     |                                     | (                                     | '                                          | د ـ ـ ـ ـ ـ                           |                | ·                |                  | <u>ل</u> ــــ                           | '                                       |                                         |        | 1      |
| 1            | 1                | 1                | 1<br>1                    | 1<br>1              | 1 1<br>1 1                          | 1<br>1                                | 6                                          | 6                                     | 1              | . I              | 1                | 1<br>1 1                                | . I                                     |                                         | r<br>L | 1<br>1 |
| <br>  0      | ا<br>ا ـ ـ ـ ـ ـ | ا<br>د ـ ـ ـ ـ   | <br> <br>                 | )<br>               |                                     | '                                     |                                            | , , , , , , , , , , , , , , , , , , , |                |                  | ا<br>            | ا<br>د ـ ـ ـ ـ ـ ا                      | , , , , , , , , , , , , , , , , , , ,   |                                         |        |        |
|              |                  | 1                |                           | 1                   | i i                                 | , i                                   |                                            |                                       | Ĩ              | , i              |                  | 1                                       |                                         | _                                       |        |        |
| 1            | 1                | 1                | r<br>F                    | r<br>F              | i i<br>I i                          | 1<br>1 1                              | 1<br>1 1                                   | 1<br>1 1                              | 1              | 1                |                  | 1<br>1 1                                | 1                                       |                                         | i.     | 1      |
| <sup>1</sup> |                  |                  | <br>$\frac{1}{1}$         |                     | $\frac{1}{1} \frac{1}{7}$           | , ¦                                   | -<br>                                      |                                       |                |                  | <sup>-</sup>     |                                         | , <sup>1</sup>                          |                                         | ;      | ,<br>1 |
| 1            | 1                | 1                | 1                         | 1                   | ( )<br>( )                          | i I                                   | i i                                        | i i                                   | 1              |                  |                  | 1                                       | с с<br>Г                                |                                         | i<br>I | 1      |
|              |                  |                  | 1                         | 1                   |                                     |                                       | i i                                        | i i                                   | , i            |                  |                  |                                         |                                         |                                         | 1      | 1      |
| ;            | ;                |                  | <br><u>-</u>              |                     |                                     |                                       |                                            |                                       |                |                  |                  |                                         | '                                       |                                         |        |        |
| 1            | 1                | 1                | l<br>I                    | l<br>I              | I I<br>I I                          | 1<br>1                                | . 1<br>  1                                 | . 1<br>  1                            | 1              | 1                | 1                | 1<br>1 1                                | I.                                      |                                         | 1      | i<br>I |
| 1            | 1                | 1                | 1                         | 1                   | ( )<br>( )                          | i<br>I                                | i i                                        | i i                                   | 1              |                  |                  | 1                                       | с – С                                   |                                         | i<br>I | 1      |
|              |                  |                  | <br>                      |                     | ·                                   |                                       |                                            |                                       |                |                  |                  |                                         |                                         |                                         |        |        |
| 1            | 1                | 1                | i<br>L                    | i<br>L              |                                     | 1<br>1 1                              | 1<br>1 1                                   | 1<br>1 1                              | 1              | 1                |                  | 1<br>1 1                                | 1                                       |                                         | i.     | r<br>F |
| <br>         | )                |                  | <br>+                     | (                   | <br>     <br> +                     | ()                                    | (-, -, -, -)                               |                                       | +              | н — — — — )      |                  | ( -  -  -  -  -  -  -  -  -  -  -  -  - | ()                                      |                                         | (      | 1<br>4 |
| 1            |                  |                  |                           |                     | i i                                 |                                       |                                            |                                       |                |                  |                  |                                         |                                         |                                         | 1<br>1 | 1      |
| , i          | , i              | , i              | 1                         | 1                   | 1 1<br>1 1                          |                                       | · ·                                        | · ·                                   | , i            | i                |                  |                                         |                                         |                                         | 1      | 1      |
|              |                  |                  | <br>                      |                     |                                     |                                       | аны алы алы алы алы алы алы алы алы алы ал |                                       |                |                  |                  |                                         |                                         |                                         |        | n =    |
| 1            | 1                | 1                | 1<br>1                    | 1<br>1              |                                     | 1<br>1                                | 6                                          | 6                                     | 1              | . I              | 1                | 1<br>1 1                                | . I                                     |                                         | r<br>L | 1<br>1 |
| 1            |                  |                  | 1                         | 1                   | 1 1<br>1 1                          | і і<br>і і                            | i i                                        | i i                                   | 1              |                  | 1                |                                         | с с<br>1                                |                                         | i<br>I | 1      |
| }            | ;                |                  | <br>                      |                     |                                     |                                       |                                            |                                       |                |                  |                  |                                         |                                         |                                         |        |        |
| 1            | 1                | 1                | i<br>L                    | i<br>L              | i I<br>I I                          | 1<br>1 1                              | 1<br>1 1                                   | 1<br>1 1                              | 1              | 1                |                  | 1<br>1 1                                | 1                                       | 1                                       | 1      | i<br>I |
|              |                  |                  |                           |                     |                                     |                                       |                                            |                                       |                |                  |                  |                                         |                                         |                                         |        |        |
|              |                  |                  | <br>                      |                     | 1 1                                 |                                       | · · ·                                      |                                       |                |                  |                  |                                         |                                         |                                         |        |        |
| 1            |                  |                  | L                         | i<br>L              |                                     | , , , , , , , , , , , , , , , , , , , | , , , , , , , , , , , , , , , , , , ,      |                                       |                |                  |                  | , , , , , , , , , , , , , , , , , , ,   |                                         | I                                       | i -    | i<br>I |
|              | !                |                  | <br>*                     |                     |                                     |                                       | F = = = = = 1                              |                                       | +              |                  |                  |                                         |                                         |                                         |        |        |
| 1            | 1                | 1                | 1                         | 1                   | 1 1<br>1 1                          | 1<br>1                                | ( )<br>                                    | ( )<br>                               | 1              | . 1              | 1                | 1<br>1 1                                | . I                                     | 1                                       | 1<br>1 |        |
|              | 1                |                  | 1                         | 1                   | 1 1<br>1 1<br>1 1                   | i                                     | i i                                        | i i                                   | , i            |                  | i.               |                                         | н — — — — — — — — — — — — — — — — — — — |                                         | 1<br>1 | 1      |
|              |                  |                  |                           |                     |                                     |                                       |                                            |                                       |                |                  |                  |                                         |                                         |                                         |        |        |
| 1            | 1                | 1                | l<br>I                    | l<br>I              |                                     | 1<br>1                                |                                            |                                       | 1              | 1                | 1                | 1<br>1 1                                | 1                                       |                                         | 1      | l<br>L |
| 1            | 1                | 1                | 1                         | 1                   | ( )<br>                             | i<br>I                                | i i                                        | i i                                   | 1              |                  |                  | 1                                       | с – С                                   |                                         | i<br>I | 1      |
|              |                  |                  | <br><u></u>               | <u></u>             |                                     |                                       | i                                          | <u>,</u>                              |                |                  | <u>e e e e e</u> |                                         |                                         |                                         |        |        |
| 1            | 1                | 1                | ,<br>1                    | ,<br>1              |                                     | , i                                   | i i                                        | i i                                   | 1              | 1                |                  | , i                                     |                                         | l i i i i i i i i i i i i i i i i i i i | 1      | 1      |
| ן<br>ובבבבו  | ا<br>اے بے بے بے | ا<br>لا ـ ـ ـ ـ  | <br>1<br>L                | )<br>12 - 2 - 2 - 2 | ו                                   | י<br>ייביבים                          | ( )<br>( )                                 | )<br>12 - 2 - 2 - 2                   |                | ا<br>ا ـ ـ ـ ـ ـ |                  | ו ו<br>ב                                | <br>                                    | L                                       | )<br>  | )<br>/ |
| 1            |                  |                  |                           | 1                   | 1                                   | 1 1                                   | 1                                          | 1                                     | 1              |                  |                  | 1 1                                     |                                         | l.                                      | 1<br>1 | i i    |
|              |                  |                  |                           |                     |                                     |                                       |                                            |                                       |                |                  |                  |                                         |                                         |                                         |        |        |
| j            | , i              |                  | 1                         | 1                   | 1                                   | н н<br>1                              | 1                                          | 1                                     |                |                  | i i              |                                         |                                         |                                         | 1      | 1      |

Long-distance capacitive proximity sensor

## E2K-C

## Capacitive Proximity Sensor with Adjustable Sensitivity

- Detects both metallic and non-metallic objects (glass, lumber, water, oil, plastic, etc.) without direct contact.
- DC models acquire CE marking



## **Ordering Information**

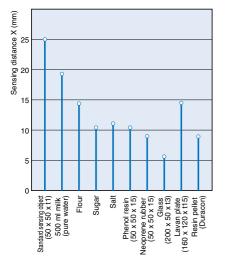
### Sensors

|                    |               |                | Model                 |                  |            |  |  |  |
|--------------------|---------------|----------------|-----------------------|------------------|------------|--|--|--|
| Shape              | Sensing dista | ince           | Output specifications | Operating status |            |  |  |  |
|                    |               |                | Output speemeations   | NO               | NC         |  |  |  |
| Unshielded         |               |                | DC 3-wire NPN         | E2K-C25ME1       | E2K-C25ME2 |  |  |  |
|                    | 3 t           | o 25mm         | DC 3-wire PNP         | E2-KC25MF1       | E2K-C25MF2 |  |  |  |
| ● <b>●</b> 34 dia. |               | 3 10 2511111 - | AC 2-wire Models      | E2K-C25MY1       | E2K-C25MY2 |  |  |  |

## Accessories (Order Separately)

Mounting Brackets

| Shape | Model    | Quantity | Remarks                    |
|-------|----------|----------|----------------------------|
|       | Y92E-A34 | 1        | Supplied with the product. |


## **Rating/Performance**

| Item                                                                      | Model                      | E2K-C25M⊡1                                                                                            | E2K-C25M□2                  | E2K-C25MY1                                                                                           | E2K-C25MY2                |  |  |  |  |  |
|---------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|
| Sensing d                                                                 | listance *                 | 25 mm                                                                                                 |                             |                                                                                                      |                           |  |  |  |  |  |
| Sensing d<br>adjustable                                                   |                            | 3 to 25 mm                                                                                            |                             |                                                                                                      |                           |  |  |  |  |  |
| Sensing o                                                                 | bject                      | Conductors and dielectrics                                                                            |                             |                                                                                                      |                           |  |  |  |  |  |
| Standard                                                                  | sensing object             | with grounded metal: 50 x 50 x 1t mm                                                                  |                             |                                                                                                      |                           |  |  |  |  |  |
| Differentia                                                               | al distance                | 15% max. of sensing distance (when adjusted to 25 mm ±10% with standard object)                       |                             |                                                                                                      |                           |  |  |  |  |  |
| Response                                                                  | frequency                  | 70 Hz                                                                                                 |                             | 10 Hz                                                                                                |                           |  |  |  |  |  |
| Power sup<br>voltage ra                                                   | oply(Operating<br>nge)     | 12 to 24 VDC, ripple (p-p):                                                                           | 10% max.,(10 to 40 VDC)     | 100 to 220 VAC (90 to 250                                                                            | ) VAC) 50/60 Hz           |  |  |  |  |  |
| Current co                                                                | onsumption                 | E models: 10 mA max. at 1                                                                             | 2 VDC, 16 mA max. at 24     | VDC                                                                                                  |                           |  |  |  |  |  |
| Leakage o                                                                 | current                    | Y models: 1 mA max. at 10 with output turned OFF.                                                     | 0 VAC (50/60 Hz) with out   | put turned OFF., 2 mA max.                                                                           | at 200 VAC (50/60 Hz)     |  |  |  |  |  |
| Control Control Control Control Control Control Capacity Residual voltage |                            | 200 mA max.                                                                                           |                             | 5 to 200 mA (resistive load                                                                          | l)                        |  |  |  |  |  |
|                                                                           |                            | 2 V max. (under load current of 200 mA with cable length of 2 m)                                      |                             |                                                                                                      |                           |  |  |  |  |  |
| Indicator I                                                               | amp                        | Detection indicator (red LE                                                                           | D)                          | Operation indicator (red LE                                                                          | ED)                       |  |  |  |  |  |
| Operating<br>(with sens<br>approaching                                    | ing object                 | E1, Y1 models: NO<br>E2, Y2 models: NC                                                                |                             |                                                                                                      |                           |  |  |  |  |  |
| Protective                                                                | circuits                   | Reverse connection protec                                                                             | tion, surge absorber        | Surge absorber                                                                                       |                           |  |  |  |  |  |
| Ambient te                                                                | emperature                 | Operating/Storage: -25°C to 70°C (with no icing or condensation)                                      |                             |                                                                                                      |                           |  |  |  |  |  |
| Ambient h                                                                 | umidity                    | Operating/Storage: 35% to 95%RH (with no condensation)                                                |                             |                                                                                                      |                           |  |  |  |  |  |
| Temperat                                                                  | ure influence              | $\pm 15\%$ max. of sensing distance at 23° within temperature range $-10^{\circ}$ C to $55^{\circ}$ C |                             |                                                                                                      |                           |  |  |  |  |  |
| Voltage in                                                                | fluence                    | ±2% max. of sensing distar<br>85% and 115% of the rated                                               |                             | $\pm 2\%$ max. sensing distance<br>90% to 120% of a rated pc<br>and from 80% to 120% of a<br>200 VAC | ower voltage of 100 VAC   |  |  |  |  |  |
| Insulation                                                                | resistance                 | 50 M $\Omega$ min. (at 500 VDC) b                                                                     | etween current carry parts  | and case                                                                                             |                           |  |  |  |  |  |
| Dielectric                                                                | strength                   | 1000 VAC 50/60 Hz for 1 n<br>between energized part an                                                |                             | 1,500 VAC 50/60 Hz for 1m and case                                                                   | nin between energized par |  |  |  |  |  |
| Vibration I                                                               | resistance                 | 10 to 55 Hz, 1.5 mm double                                                                            | e amplitude for 2 hours eac | ch in X, Y, and Z directions                                                                         |                           |  |  |  |  |  |
| Shock res                                                                 | istance                    | Destruction: 500 m/s <sup>2</sup> for 1                                                               | 0 times each in X, Y, and Z | directions                                                                                           |                           |  |  |  |  |  |
| Protective                                                                | structure                  | IEC 60529 IP66                                                                                        | IEC 60529 IP66              |                                                                                                      |                           |  |  |  |  |  |
| Connectio                                                                 | on method                  | Pre-wired models (standard length: 2 m)                                                               |                             |                                                                                                      |                           |  |  |  |  |  |
| Weight (P                                                                 | acked state)               | Approx. 200 g                                                                                         |                             |                                                                                                      |                           |  |  |  |  |  |
| Material                                                                  | Case<br>Sensing<br>surface | Heat-resistant ABS resin                                                                              |                             |                                                                                                      |                           |  |  |  |  |  |
| Accessori                                                                 |                            | Mounting bracket, instruction                                                                         | on manual                   |                                                                                                      |                           |  |  |  |  |  |
|                                                                           |                            |                                                                                                       |                             |                                                                                                      |                           |  |  |  |  |  |

\* The set distances are sensing distances applicable to standard sensing objects. Refer to Engineering Data for sensing distances applicable to other types of objects.

## Characteristic data (typical)

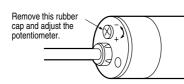
## Sensing Distance Change by Sensing Object (Typical)



## **Output Circuit Diagram**

#### DC 3-wire Models

| Operating<br>status | Model      | Timing chart                                                                                                                                                                             | Output circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO                  | E2K-C25ME1 | Sensing object Yes<br>Load Operates<br>(between brown and black) Releases<br>Output voltage<br>(between black and blue)<br>Operation indicator (red)<br>OFF                              | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NC                  | E2K-C25ME2 | Sensing object Yes<br>Load Cereles<br>(between brown and black)<br>(between black and blue)<br>(between black and blue)<br>(between black and blue)<br>Coperation indicator (red)<br>OFF | * 1. 200 mA max. (load current)<br>* 2. When a transistor is connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NO                  | E2K-C25MF1 | Sensing object Yes No<br>Load Oprates<br>(between brown and black) Releases<br>Output voltage H<br>(between black and blue)<br>Operation indicator (red) ON<br>OFF                       | Main<br>circuit<br>2.2Ω Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NC                  | E2K-C25MF2 | Sensing object Yes<br>No<br>Load Operates<br>Output voltage H<br>(between black and blae) L<br>Operation indicator (red) ON<br>OFF                                                       | <sup>circuit</sup><br>4.7KΩ≩<br><sup>100Ω</sup><br><sup>100Ω</sup><br><sup>100Ω</sup><br><sup>100Ω</sup><br><sup>100Ω</sup><br><sup>100Ω</sup><br><sup>100Ω</sup><br><sup>100Ω</sup><br><sup>100Ω</sup><br><sup>100Ω</sup><br><sup>100Ω</sup><br><sup>100Ω</sup><br><sup>100Ω</sup><br><sup>100Ω</sup><br><sup>100Ω</sup><br><sup>100Ω</sup><br><sup>100Ω</sup><br><sup>100Ω</sup><br><sup>100</sup><br><sup>100Ω</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>10</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup><br><sup>100</sup> |


#### AC 2-wire Models

| Operating<br>status | Model      | Timing chart                                                                           | Output circuit  |
|---------------------|------------|----------------------------------------------------------------------------------------|-----------------|
| NO                  | E2K-C25MY1 | Sensing object Ves<br>No<br>Load Releases<br>Operation indicator (red) OFF             | Main<br>circuit |
| NC                  | E2K-C25MY2 | Sensing object Yes<br>No<br>Load Operates<br>Releases<br>Operation indicator (red) OFF |                 |

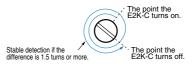
## Operation

#### Sensitivity adjustment

Remove the rear rubber cap of the E2K-C and turn the potentiometer in the hole to adjust the sensitivity of the E2K-C.



The sensing distance increases by turning the potentiometer clockwise and decreases by turning the potentiometer counterclockwise. The potentiometer can make 15±3 valid turns and then make slip turns because the potentiometer does not have a stopper. The slip turns will not, however, damage the potentiometer.


 Slowly turn the potentiometer clockwise until the E2K-C turns on with no sensing object.



 Turn the potentiometer counterclockwise until the E2K-C turns off with the sensing object located within the sensing distance.



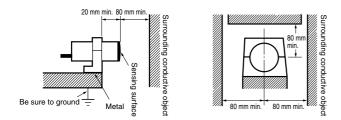
3. The E2K-C will be in stable operation if there is a difference of 1.5 turns or more between the points the E2K-C is turned on and off, otherwise the E2K-C will not be in stable operation.



4. Set the potentiometer midway between the two points.

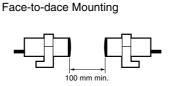


5. If the distance of each sensing object varies, take step 2 with the sensing object located at the farthest sensing distance to be applied.


## **Precautions**

#### Design

#### Effects of Surrounding Metal


During Proximity Sensor installation provide a distance of 80 mm min. from the surrounding metal objects to prevent the Sensor from being affected by metal objects other than the sensing object.

If installing the Sensor with the L-shaped mounting bracket, provide a distance of 20 mm min. between the face of the sensing head and the mounting bracket.



#### Mutual Interference

Space the two Sensors at a distance exceeding 100 mm to prevent mutual interference.

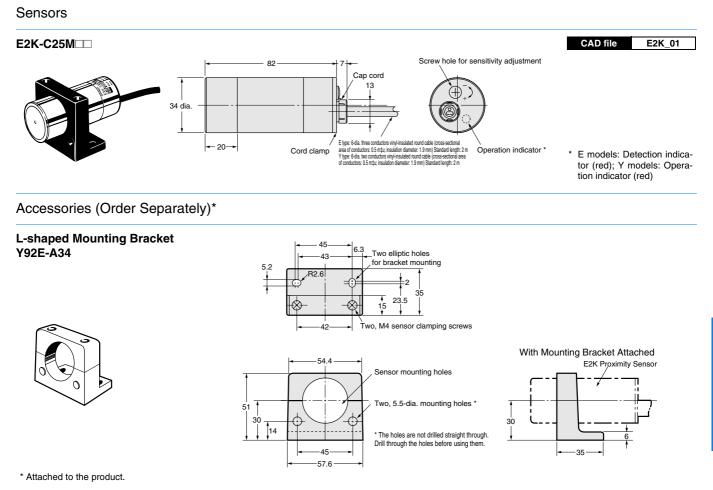




Effect of High-frequency Electro-magnetic Field

The E2K-C may malfunction if there is an ultrasonic washer, high-frequency generator, transceiver, or inverter nearby.

### Sensing Object


- Sensing Object Material. The E2K-C can detect almost any type of object. The sensing distance of the E2K-C, however, will vary with the electrical characteristics of the object, such as the conductance and inductance of the object, and the water content and capacity of the object. The maximum sensing distance of E2K-C will be available if the object is made of grounded metal.
- Indirect Detection. In the case of the detection of objects in metal containers, each metal container must have a nonmetallic window.

#### Miscellaneous

#### **Organic Solvents**

E2K-C has a case made of heat-resistant ABS resin. Be sure that the case is free from organic solvents or solutions containing organic solvents.

## **Dimensions (Unit: mm)**



Flat type E2K-F

Low-profiled Capacitive Proximity Sensor providing Flexible Installation



## **Ordering Information**

| Shape     | Sens | ing dist | ance | Output<br>specifications | Operating<br>status | Model      |
|-----------|------|----------|------|--------------------------|---------------------|------------|
| Flat type |      | 10 mm    |      | DC 3-wire NPN            | NO *                | E2K-F10MC1 |

\* NC models available (E2K-F10MC2)

## **Rating/Performance**

| Item                                               |                         | E2K-F10MC1                                                                                   |  |  |  |  |  |
|----------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|
| Sensing dis                                        | tance                   | 10 mm ±10%                                                                                   |  |  |  |  |  |
| Setting dista                                      | ance                    | 0 to 7.5 mm                                                                                  |  |  |  |  |  |
| Differential                                       | distance                | 15% max. sensing distance                                                                    |  |  |  |  |  |
| Sensing obj                                        | ect                     | Conductors and dielectrics                                                                   |  |  |  |  |  |
| Standard se                                        | ensing object           | with grounded metal: 50 x 50 x 1 mm                                                          |  |  |  |  |  |
| Response f                                         | requency                | 100 Hz                                                                                       |  |  |  |  |  |
| Rated supp<br>(operating v                         | ly voltage<br>′oltage)  | 12 to 24 VDC (10 to 30 VDC), ripple (p-p): 10% max.                                          |  |  |  |  |  |
| Current con                                        | sumption                | 10 mA max. (24VDC)                                                                           |  |  |  |  |  |
| Control                                            | Switching capacity      | NPN open collector 100 mA max. (under 30 VDC)                                                |  |  |  |  |  |
| output                                             | Residual voltage        | 1.5 V max. (under load current of 100 mA with cable length of 2 m)                           |  |  |  |  |  |
| Indicator lar                                      | np                      | Detection indicator (red LED)                                                                |  |  |  |  |  |
| Operating status (with sensing object approaching) |                         | NO                                                                                           |  |  |  |  |  |
| Protective c                                       | ircuits                 | Reverse connection protection, surge absorber                                                |  |  |  |  |  |
| Ambient ter                                        | nperature               | Operating/Storage: -10°C to 55°C (with no icing or condensation)                             |  |  |  |  |  |
| Ambient hu                                         | midity                  | Operating/Storage: 35% to 95%RH                                                              |  |  |  |  |  |
| Temperatur                                         | e influence             | ±15% max. of sensing distance at 23°C within the temperature range of -10°C and 55°C         |  |  |  |  |  |
| Voltage influ                                      | uence                   | ±2.5% max. of sensing distance within a range of ±10% of rated supply voltage                |  |  |  |  |  |
| Insulation re                                      | esistance               | 50 M $\Omega$ min. (at 500 VDC) between energized parts and case                             |  |  |  |  |  |
| Dielectric st                                      | rength                  | 500 VAC 50/60 Hz for 1 min between energized part and case                                   |  |  |  |  |  |
| Vibration re                                       | sistance                | Malfunction: 10 to 55 Hz, 1.5 mm double amplitude for 2 hours each in X, Y, and Z directions |  |  |  |  |  |
| Shock resis                                        | tance                   | Destruction: 500 m/s <sup>2</sup> for 3 times each in X, Y, and Z directions                 |  |  |  |  |  |
| Protective s                                       | tructure                | IEC 60529 IP66                                                                               |  |  |  |  |  |
| Connection                                         | method                  | Pre-wired models (standard length: 2 m)                                                      |  |  |  |  |  |
| Weight (Pad                                        | cked state)             | Approx. 35 g                                                                                 |  |  |  |  |  |
| Material                                           | Case<br>Sensing surface | Heat-resistant ABS resin                                                                     |  |  |  |  |  |
| Accessories                                        |                         | Instruction manual                                                                           |  |  |  |  |  |

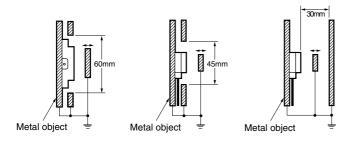
## Characteristic data (typical)

## Sensing Distance vs. Sensing Object

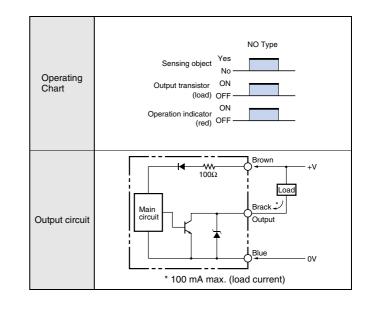


## **Precautions**

Correct Use

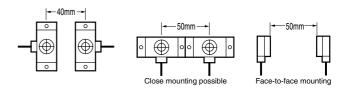

#### Design

### Sensing Object Material


E2K-F can detect almost any type of object. The sensing distance of E2K-F, however, will vary with the electrical characteristics of the object, such as the conductance and inductance of the object, as well as the water content and capacity of the object. The maximum sensing distance of E2K-F will be available if the object is made of grounded metal. There are objects that cannot be detected indirectly. Therefore test E2K-F in a trial operation with the objects before using E2K-F in actual applications.

#### Effects of Surrounding Metal

Separate E2K-F from ambient metals as shown below.




## **Output Circuit Diagram**

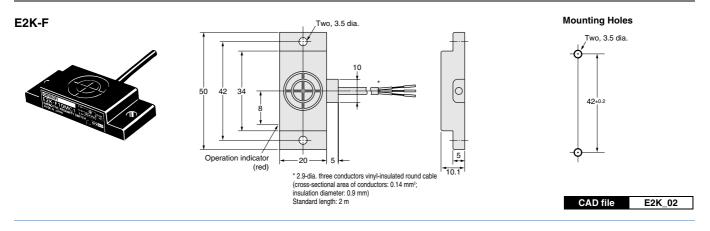


#### **Mutual Interference**

If installing more than one E2K-F face to face or side by side, separate them as shown below.



#### Effect of High-frequency Electro-magnetic Field


E2K-F may malfunction if an ultrasonic washer, high-frequency generator, transceiver, or inverter are nearby.

For a typical measure, refer to the "Noise" with Common precautions of a photoelectric sensor in Rear B-page.

#### Wiring Considerations

The characteristics of E2K-F will not change if the cord is extended. Keep in mind that voltage drops may occur due to the cord extension, thus, ensure that the total cord length does not exceed 200 m.

## Dimensions (Unit: mm)



## MEMO

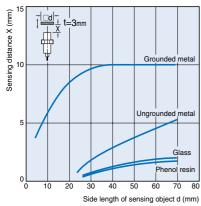
|                                         |                                           |        |        |                                           |                     |                                       | <br>           |        | <br> | <br>      | <br>                     |                                         |             |
|-----------------------------------------|-------------------------------------------|--------|--------|-------------------------------------------|---------------------|---------------------------------------|----------------|--------|------|-----------|--------------------------|-----------------------------------------|-------------|
| l<br>I                                  | l<br>I                                    | 1      | 1      | l<br>I                                    | 1<br>1              | i i<br>I i                            |                | 1      |      |           | l<br>I                   | l<br>I                                  | 1<br>1      |
| <br> <br>                               | <br> <br>                                 |        |        | <br> <br>                                 | )<br>               | <br>                                  | <br> <br> <br> | <br>   | <br> |           | <br> <br> <br>           | <br> <br>                               | )<br> <br>  |
|                                         |                                           |        |        |                                           | 1                   |                                       |                |        |      |           | 1<br>1<br>1              |                                         | 1           |
|                                         |                                           |        |        |                                           | 1                   |                                       |                |        |      |           | 1                        |                                         | 1           |
|                                         | ·                                         |        |        | <u>.</u>                                  |                     |                                       | <br>           |        | <br> | <br>      | <br><br>1                | '<br>                                   | ;·          |
|                                         |                                           |        |        |                                           | 1                   |                                       |                |        |      |           | 1<br>1                   |                                         | 1           |
| ц<br>Г                                  |                                           |        |        | L                                         |                     |                                       | <br>L          |        | <br> | <br>      | <br>с<br>,               |                                         | 1           |
| l<br>L                                  | l<br>L                                    |        |        | l<br>L                                    | 1<br>1              | і і<br>і і                            |                |        |      |           | 1<br>1                   | l<br>L                                  | 1<br>1      |
| ।<br>⊨ = = = =                          | i<br>                                     | <br>   |        | ।<br>+                                    | i<br>i              | 1 1<br>1 4                            | <br>           | <br>   | <br> | <br> <br> | <br>ı<br>⊢ – – – –       | i<br>i                                  | 1<br>4      |
| l<br>L                                  | l<br>L                                    | l<br>I | l<br>I | l<br>L                                    | l<br>L              | i i<br>i i                            |                | l<br>I |      |           | l<br>L                   | l<br>L                                  | l<br>L      |
| l<br>L                                  | l<br>L                                    | l<br>l | l<br>l | l<br>L                                    | l<br>L              | i i<br>I i                            |                | l<br>l |      |           | i<br>I                   | l<br>L                                  | l<br>L      |
| r                                       |                                           |        |        | г<br>I                                    | i                   | і———— т<br>І                          | <br>           |        | <br> | <br>      | <br>                     | <br>                                    |             |
| l<br>I                                  | l<br>I                                    |        |        | l<br>I                                    | l<br>I              |                                       |                |        |      |           | i<br>I                   | l<br>I                                  | i<br>I      |
|                                         |                                           |        |        | <u>-</u>                                  |                     | <del> </del>                          | <br>           |        | <br> | <br>      | <br>                     |                                         |             |
|                                         |                                           |        |        |                                           | 1                   |                                       |                |        |      |           | 1<br>1<br>1              |                                         | 1           |
|                                         |                                           |        |        | L                                         |                     | 4                                     | <br>           |        | <br> | <br>      | <br>                     |                                         |             |
|                                         |                                           | <br>   | <br>   | I<br>I                                    | 1                   | <br>I                                 |                | <br>   |      |           | 1                        |                                         | 1           |
| і<br>н — — — — —                        |                                           |        |        | +                                         |                     | י<br>י<br>ו +                         |                |        | <br> | <br> <br> | <br>                     |                                         |             |
| l<br>I                                  | l<br>I                                    | 1      | 1      | l<br>I                                    | 1                   | , , , , , , , , , , , , , , , , , , , |                | 1      |      |           | 1<br>1                   | l<br>I                                  | 1           |
| r<br>F                                  | r<br>F                                    |        |        | r<br>F                                    | 1                   | і і<br>і і                            |                |        |      |           | i<br>i                   | r<br>F                                  | 1           |
| с — — — —<br>1                          | с<br>Г                                    | <br>   |        | г — — — —<br>I                            | (<br>)              | і — — — <del>—</del><br>І             | <br>           | <br>   | <br> | <br>      | <br>                     | 1<br>1                                  | ( )<br>(    |
| l<br>L                                  | l<br>L                                    |        |        | n<br>N                                    | 1<br>1              | i i                                   |                |        |      |           | r<br>r                   | l<br>L                                  | 1<br>1      |
| <u>-</u>                                |                                           |        |        | <u> </u>                                  |                     | $\frac{1}{1} \frac{1}{1}$             | <br>           |        | <br> | <br>      | <br><u>-</u>             |                                         | {           |
| l<br>L                                  | l<br>L                                    |        |        | l<br>L                                    | 1<br>1              | i i<br>i i                            |                |        |      |           | l<br>L                   | l<br>L                                  | 1<br>1      |
|                                         |                                           | <br>   |        | L                                         | )<br>12 - 2 - 2 - 2 | ו<br>ע ב ב ב ו                        |                |        | <br> | <br>      | <br>                     |                                         | )<br>/      |
| l<br>L                                  | l<br>L                                    | l<br>I | l<br>I | l<br>L                                    | l<br>L              | i i<br>i i                            |                | l<br>I |      |           | l<br>L                   | l<br>L                                  | 1<br>1      |
| l<br>L                                  | l<br>L                                    |        |        | l<br>L                                    | l<br>I              | i i<br>I i                            |                |        |      |           | 1<br>1                   | l<br>L                                  | l<br>I      |
| F                                       | <br>                                      |        |        | +                                         | <br>                | +<br>                                 | <br>           |        | <br> | <br>      | <br><br>'                | <br>                                    |             |
|                                         |                                           |        |        |                                           | 1                   |                                       |                |        |      |           | 1                        |                                         | 1           |
| ,<br>,                                  |                                           |        |        | ,<br>                                     |                     |                                       | <br>           |        | <br> | <br>      | <br>,<br>,               | ,<br>,                                  |             |
|                                         |                                           |        |        |                                           |                     |                                       |                |        |      |           | 1                        |                                         |             |
|                                         |                                           |        |        | <u> </u>                                  |                     |                                       | <br>           |        | <br> | <br>      | <br>                     |                                         | [           |
| 1                                       | 1                                         |        |        | 1                                         | 1.<br>1.            |                                       |                |        |      |           | 1<br>1                   | 1                                       | 1.<br>1.    |
|                                         | n<br>Giologia                             |        |        | L                                         | )<br>12 - 2 - 2 - 2 |                                       | <br>L          |        | <br> | <br>      | <br>                     |                                         | )<br>/      |
| l<br>L                                  | l<br>L                                    |        |        | n<br>N                                    | 1<br>1              | i i                                   |                |        |      |           | r<br>r                   | l<br>L                                  | 1<br>1      |
| l<br>L                                  | l<br>L                                    |        |        | l<br>L                                    | 1<br>1              | i i                                   |                |        |      |           | r<br>F                   | l<br>L                                  | 1<br>1      |
| F                                       | н — — — —<br>I                            | <br>   |        | +<br>I                                    |                     | +<br>                                 | <br>'          | <br>   | <br> |           |                          | ı                                       | ( ·         |
| l<br>L                                  | l<br>L                                    |        |        | l<br>L                                    | l<br>L              | <br>   <br>                           |                |        |      | I I       |                          | l<br>L                                  | l<br>L      |
| r                                       |                                           |        |        |                                           |                     |                                       | <br>           |        | <br> | <br>      | <br>,<br>, , , , , , , , |                                         | 1<br>1      |
| l i i i i i i i i i i i i i i i i i i i |                                           |        |        |                                           | (<br>(              |                                       |                |        |      |           |                          |                                         | (           |
|                                         |                                           |        |        | <br>                                      |                     |                                       | <br>           |        | <br> | <br>      | <br>)<br>                | <br>                                    |             |
|                                         |                                           |        |        |                                           | 1<br>1              |                                       |                |        |      |           | 1<br>                    |                                         | 1<br>1      |
|                                         |                                           |        |        |                                           | 1<br>1              | <br>           <br>                   |                |        |      |           | н<br>1<br>1              |                                         | •<br>•<br>• |
|                                         |                                           |        |        |                                           |                     |                                       | <br>           |        | <br> | <br>      | <br>                     |                                         |             |
| l<br>I                                  | l<br>I                                    | 1      | 1      | l<br>I                                    | 1                   | <br>     <br>  +                      |                | 1      |      |           | 1<br>1                   | l<br>I                                  | 1           |
| н — — — —<br>Г                          | L. C. |        |        | L. C. | 1                   | I I                                   |                |        |      |           | <br>⊨ – – – –<br>I       | <br>                                    | (           |
| l<br>I                                  | l<br>I                                    | 1      | 1      | l<br>I                                    | i<br>1              |                                       |                | 1      |      |           |                          |                                         | 1           |
| ,<br>,                                  |                                           |        |        |                                           |                     |                                       |                |        |      |           | 1                        | '                                       |             |
| r<br>F                                  | r<br>F                                    | 1      | 1      | r<br>F                                    | 1<br>1              |                                       |                | 1      |      | I I       | i<br>L                   | r<br>F                                  | 1<br>1      |
| i<br>I                                  |                                           | 1      | 1      | i<br>I                                    | (<br>(              | i i<br>I i                            | 1              |        |      |           | i<br>I                   |                                         |             |
| i<br>I                                  |                                           |        |        | <br>I                                     | (                   |                                       | <br>           |        | <br> | <br>      | <br>г<br>I               | <br>                                    | ( )<br>(    |
| l<br>L                                  | 1                                         | l.     | l.     | l i i i i i i i i i i i i i i i i i i i   | 1                   | I I                                   |                | l.     |      |           | 1                        | l i i i i i i i i i i i i i i i i i i i | 1<br>1      |
| L<br>                                   |                                           |        |        | L                                         | 1<br>1              |                                       |                |        | <br> |           |                          |                                         |             |
| l<br>L                                  | l<br>L                                    | l<br>I | l<br>I | l<br>L                                    | l<br>I              | 1 I                                   |                | l<br>I |      |           | l<br>L                   | l<br>L                                  | 1<br>1      |
|                                         | <br>                                      |        |        |                                           | <br>                |                                       | <br>           | <br>   | <br> | <br> <br> | <br>                     | <br>                                    | 1<br>4      |

## Inductive Proximity Sensor E2KQ-X

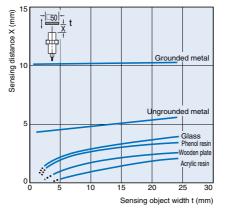
## Proximity Sensor with Easy Sensing Distance Adjustment and Teflon \* Coating Effective Oil and Chemical Resistance

- Oil and chemical-resistant Teflon case.
- Sensitivity adjuster ensures easy sensing distance adjustment according to the sensing object.
- Incorporates a cord connector with an indicator providing high visibility.
- \* Teflon is a registered trademark of Dupont Company and Mitsui Dupont Chemical Company for their fluoride resin.



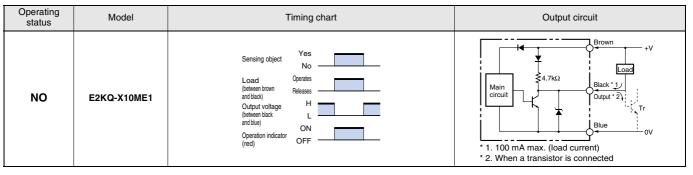

## **Ordering Information**

| Shape | Sens | sing dist | tance | Output        | Operating<br>status | Model |             |
|-------|------|-----------|-------|---------------|---------------------|-------|-------------|
|       | M18  |           |       | 6 to<br>10 mm | DC 3-wire<br>NPN    | NO *  | E2KQ-X10ME1 |


\* NC models available (E2KQ-X10ME2)

## Characteristic data (typical)

### Sensing Distance vs. Sensing Object




#### Sensing Object Thickness and Material vs. Sensing Distance



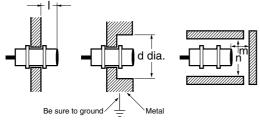
## **Output Circuit Diagram**

#### DC 3-wire Models



## **Rating/Performance**

| Item                                | Model                    | E2KQ-X                                                                                 |  |  |  |  |  |
|-------------------------------------|--------------------------|----------------------------------------------------------------------------------------|--|--|--|--|--|
| Sensing distance                    | e *                      | 10 mm                                                                                  |  |  |  |  |  |
| Sensing distance adjustable range   |                          | 6 to 10 mm                                                                             |  |  |  |  |  |
| Differential dista                  | ance                     | 4% to 20% of sensing distance                                                          |  |  |  |  |  |
| Sensing object                      |                          | Conductors and dielectrics                                                             |  |  |  |  |  |
| Standard sensir                     | ng object                | with grounded metal: 50 x 50 x 1t mm                                                   |  |  |  |  |  |
| Response frequ                      | iency                    | 35 Hz                                                                                  |  |  |  |  |  |
| Rated supply vo<br>(operating volta |                          | 12 to 24 VDC (10 to 30 VDC), ripple (p-p): 10% max.                                    |  |  |  |  |  |
| Current consum                      | ption                    | 15 mA max.                                                                             |  |  |  |  |  |
| Control output                      | Switching capacity       | 100 mA                                                                                 |  |  |  |  |  |
| Control output                      | Residual voltage         | 1.5 V max. (under load current of 100 mA with cable length of 2 m)                     |  |  |  |  |  |
| Indicator lamp                      |                          | Detection indicator (red LED)                                                          |  |  |  |  |  |
| Operating statu<br>(with sensing of | s<br>pject approaching)  | Refer to previous pages for details of operating chart of output circuits.             |  |  |  |  |  |
| Protective circu                    | its                      | Reverse connection protection, surge absorber                                          |  |  |  |  |  |
| Ambient temper                      | rature                   | Operating: -10°C to 55°C, Storage: -25°C to 55°C (with no icing or condensation)       |  |  |  |  |  |
| Ambient humidi                      | ty                       | Operating/Storage: 35% to 85%RH (with no condensation)                                 |  |  |  |  |  |
| Temperature in                      | fluence                  | $\pm 15\%$ max. of sensing distance at 23°C in the temperature range of -10°C and 55°C |  |  |  |  |  |
| Voltage influence                   | e                        | 2% max. sensing distance within a range of 80% to 120% of the rated supply voltage.    |  |  |  |  |  |
| Insulation resist                   | ance                     | 50 M $\Omega$ min. (at 500 VDC) between energized parts and case                       |  |  |  |  |  |
| Dielectric streng                   | gth                      | 500 VAC 50/60 Hz for 1 min between energized part and case                             |  |  |  |  |  |
| Vibration resista                   | ance                     | 10 to 55 Hz, 1.5 mm double amplitude for 2 hours each in X, Y, and Z directions        |  |  |  |  |  |
| Shock resistance                    | e                        | Destruction: 500 m/s <sup>2</sup> for 3 times each in X, Y, and Z directions           |  |  |  |  |  |
| Protective struc                    | ture                     | IEC IP66                                                                               |  |  |  |  |  |
| Connection met                      | hod                      | Pre-wired models (standard length: 2 m)                                                |  |  |  |  |  |
| Weight (Packed                      | l state)                 | Approx. 150 g                                                                          |  |  |  |  |  |
| Material                            | Case, Sensing<br>surface | Fluororesin                                                                            |  |  |  |  |  |
|                                     | Clamping nut             |                                                                                        |  |  |  |  |  |
| Accessories                         |                          | Instruction sheet and screwdriver for adjustment                                       |  |  |  |  |  |

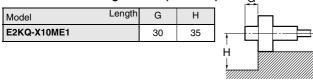

\* This sensing distance is possible with a standard sensing object. Refer to Engineering Data for sensing distances of other materials.

Correct Use

#### Design

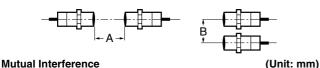
#### Effects of Surrounding Metals

If E2K-X is embedded in metal, maintain at least the following distances between E2K-X and the metal.




\* Ensure to ground the metal object, otherwise E2KQ-X will not be in stable operation.

| Effects of Surrounding Metal (Unit: mi |    |    |    |    |  |
|----------------------------------------|----|----|----|----|--|
| Model                                  | I  | d  | m  | n  |  |
| E2KQ-X10ME1                            | 30 | 75 | 18 | 90 |  |


If a mounting bracket is used, be sure that at least the following distances are maintained.

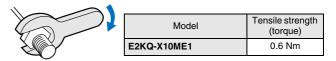
#### Effects of Surrounding Metal (Unit: mm)



#### **Mutual Interference**

If more than one Sensor is located face to face or in parallel, provide sufficient space between adjacent Sensors to suppress mutual interference as indicated in the following diagram.




|             |        |     | <b>\</b> |  |
|-------------|--------|-----|----------|--|
| Model       | Length | А   | В        |  |
| E2KQ-X10ME1 |        | 200 | 32       |  |

#### Effect of High-frequency Electro-magnetic Field

E2KQ-X may malfunction if there is an ultrasonic washer, high-frequency generator, transceiver, or inverter nearby. For a typical measure refer to the "Noise" with Common precautions of a photoelectric sensor in Rear B-page.

#### Installation

The tightening torque must not exceed the following value.



#### Adjustment

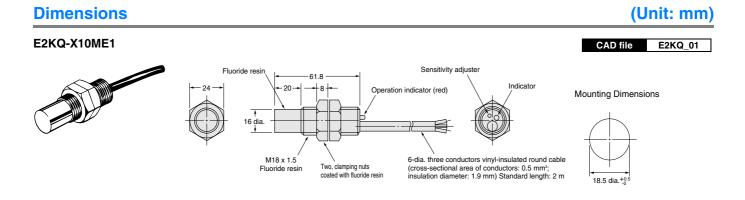
#### Sensing object

The maximum sensing distance will decrease if the sensing object is a metal or dielectric object that is not grounded.

• Sensing Object Material E2K-C can detect almost any type of object. The sensing distance of E2K-C, however, will vary with the electrical characteristics of the object, such as the conductance and inductance of the object, and the water content and capacity of the object. The maximum sensing distance of E2K-C will be available if the object is made of grounded metal.

Ensure a constant ambient operating temperature during the indirect detection of objects.

#### Miscellaneous


#### **Ambient Conditions**

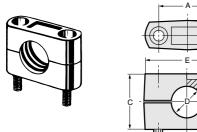
Ensure that the E2K-X is free from sprayed water, oil, chemical, or condensation, otherwise E2K-X may malfunction by detecting them as sensing objects.

#### Environment

E2KQ-X has a water-resistant design. To increase the reliability of E2KQ-X in operation, however, it is recommended that E2KQ-X is free from sprayed water or machining oil.

The cord is not coated with Teflon, which must be taken into consideration when installing the E2KQ-X.




## E-87

# Accessories

## **Mounting Bracket**

Four kinds of resin mounting brackets are available.

Choose an appropriate one depending on external dimensions.



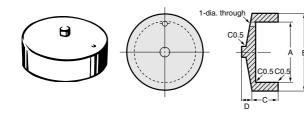
| = |
|---|
|   |
|   |
|   |

#### **Mounting Holes Dimensions**

| Item     | Length (mm) |              |    |                   |            | Use hexag- | Applicable diameter of |         |
|----------|-------------|--------------|----|-------------------|------------|------------|------------------------|---------|
| Model    | А           | В            | С  | D                 | E          | F          | onal bolts             | sensors |
| Y92E-B8  | 18 ± 0.2    | 10<br>max.   | 18 | 8-mm<br>dia.      | 28<br>max. | 6          | M4 x 20                | M8      |
| Y92E-B12 | 24 ±0.2     | 12.5<br>max. | 20 | 12-<br>mm<br>dia. | 37<br>max. | 6          | M4 x 25                | M12     |
| Y92E-B18 | 32 ±0.2     | 17<br>max.   | 30 | 18-<br>mm<br>dia. | 47<br>max. | 7          | M5 x 32                | M18     |
| Y92E-B30 | 45 ±0.2     | 17<br>max.   | 50 | 30-<br>mm<br>dia. | 60<br>max. | 10         | M5 x 50                | M30     |

Note: If using the Mounting Brackets for Non-shielded models, pay attention to the influence of surrounding metals. (For dimensions of Sensors, refer to the dimensions shown for each model.)

## Accessories


A cover is available for sensor head protection. Choose an appropriate one depending on external dimensions.



### **Protective Covers Dimensions**

| Item      |            | Length (mm) | Material      | Applicable sen-       |              |            |
|-----------|------------|-------------|---------------|-----------------------|--------------|------------|
| Model     | А          | В           | С             | Material              | sor diameter |            |
| Y92E-E12  | 14-mm dia. | 5           | 0.5 +0.2 -0.1 |                       | M12          | Shielded   |
| Y92E-E18  | 21-mm dia. | 6           | 1 ±0.2        |                       | M18          | Shielded   |
| Y92E-E30  | 33-mm dia. | 8           | 1.5 ±0.2      | Polyallylate<br>resin | M30          | Shielded   |
| Y92E-E12M | 14-mm dia. | 12          | 0.5 +0.2 -0.1 |                       | M12          | Unshielded |
| Y92E-E18M | 21-mm dia. | 16          | 1 ±0.2        |                       | M18          | Unshielded |
| Y92E-E30M | 33-mm dia. | 21          | 1.5 ±0.2      |                       | M30          | Unshielded |

## **Sputter Protection Covers**



### **Sputter Protection Covers Dimensions**

| Item       |                  | Length           | n (mm) | Mastavial | Applicable sen-    |                 |  |
|------------|------------------|------------------|--------|-----------|--------------------|-----------------|--|
| Model      | А                | В                | С      | D         | Material           | sor diameter    |  |
| Y92E-E12-2 | 11.0 mm-<br>dia. | 14.0 mm-<br>dia. | 5.0    | 1.0       |                    | M12<br>Shielded |  |
| Y92E-E18-2 | 17.0 dia.        | 21.0 dia.        | 6.0    | 3.0       | Silicone<br>rubber | M18<br>Shielded |  |
| Y92E-E30-2 | 28.5 dia.        | 33.0 dia.        | 8.0    | 6.0       |                    | M30<br>Shielded |  |

Y92